ISSN: 2536-7080
Model: Open Access/Peer Reviewed
DOI: 10.31248/RJFSN
Start Year: 2016
Email: rjfsn@integrityresjournals.org
https://doi.org/10.31248/RJFSN2021.109 | Article Number: A6CE2C9F2 | Vol.6 (3) - October 2021
Received Date: 20 March 2021 | Accepted Date: 27 August 2021 | Published Date: 30 December 2021
Authors: Tamerat Gutema* , Solomon Abera and Getachew Neme
Keywords: Cowpea, minerals, proximate composition, functional properties, Anti-nutrients, cooking time
Cowpea (Vigna unguiculata (L.) Walp.) is an important legume and an alternative source of protein which can be used as a substitute for animal protein that is limited in supply in Ethiopia. This study was initiated to evaluate the nutritional, antinutritional, functional properties and cooking time of two improved cowpea (Vigna unguiculata (L.) Walp.) varieties (Bole and Kanketi) grown in Ethiopia. The crude protein (28.80%), total ash (5.04%) and total energy (336.89 Kcal/100g) contents were higher for Bole variety than Kanketi variety (25.32%, 4.71% and 329.72 Kcal/100g), respectively. Kanketi variety had greater moisture content (8.91%), crude fiber (6.60%), crude fat (2.12%) and digestible carbohydrate (52.34%) than Bole variety (8.45%, 4.71%, 1.91% and 51.12%), respectively. The mineral content of the Bole variety revealed significantly higher values of Ca (43.36 mg/100g), Zn (6.17 mg/100g) and Fe (15.65 mg/100g) than Kanketi variety (41.91 mg/100g, 4.99 mg/100g and 13.32 mg/100g), respectively. Tannin and phytic acid content were found in the range of 28.43 to 31.23 mg/100g and 80.37 to 127.99 mg/100g, respectively, for Bole and Kanketi varieties. Both varieties had no significance (p < 0.05) difference on swelling power. Water solubility (20.19%) and oil absorption capacity (2.24 g/g) were significantly (p < 0.05) higher for Bole variety than Kanketi variety (17.56% and 2.06 g/g). Bulk density and water absorption capacity were found in the range of 0.75 to 0.79 g/ml and 2.39 to 2.54 g/g, respectively, for Bole and Kanketi varieties. The cooking time was significantly (p < 0.05) higher for Kanketi (27.42 min) than Bole variety (17.59 min). The results showed that Bole variety had good nutritional potential, low antinutritional factor, better functional properties and short cooking time than Kanketi variety. Hence, it can be used as a raw material in the food processing industries in the production of quality weaning and supplementary food products.
Adegunwa, M. O., Bakare, H. A., Alamu, E. O., & Abiodun, O. K. (2012). Processing effects on chemical, functional and pasting properties of cowpea flour from different varieties. Nigerian Food Journal, 30(1), 67-73. Crossref |
||||
Appiah, F, Asibuo, J. Y., Kumah, P. (2011). Physicochemical and functional properties of bean flours of three cowpeas (Vigna unguiculata (L.) Walp.) varieties in Ghana. African Journal of Food Science, 5(2),100-104. | ||||
Ashogbon, A. O., & Akintayo, E. T. (2013). Isolation and characterization of starches from two cowpea (Vigna unguiculata) cultivars. International Food Research Journal, 20(6), 3093-310. | ||||
Association of Official Analytical Chemists (AOAC) (1990). Official Methods of Analysis of AOAC International. William, H. (ed). Volume II, 17th Edition. | ||||
Association of Official Analytical Chemists (AOAC) (2000). Official methods of analysis (vol.2 17th edition) of AOAC International. Washington, DC, USA. Official methods 925.09, 923.03, 979.09, 962.09, 4.5.01 and 923.05. | ||||
Beuchat, L. R. (1977). Functional and electrophoretic characteristics of succinylated peanut flour protein. Journal of Agricultural and Food chemistry, 25(2), 258-261. Crossref |
||||
Bouchenak, M, Lamri-Senhadji, M. (2013). Nutritional quality of legumes and their role in cardiometabolic risk prevention. Journal of Medicinal Food, 16(3),185-198. Crossref |
||||
Butt, M. S, & Batool, R. (2010). Nutritional and functional properties of some promising legumes protein isolates. Pakistan Journal of Nutrition, 9(4), 373-379. Crossref |
||||
Carvalho, A. F. U., de Sousa, N. M., Farias, D. F., da Rocha-Bezerra, L. C. B., da Silva, R. M. P., Viana, M. P., Gouveia, S. T., Sampaio, S. S., de Sousa, M. B., de Lima, G. P. G., & de Morais, S. M. (2012). Nutritional ranking of 30 Brazilian genotypes of cowpeas including determination of antioxidant capacity and vitamins. Journal of Food Composition and Analysis, 26(1-2), 81-88. Crossref |
||||
Chinma, C. E., Alemede, I. C., Emelife, I. G. (2008). Physicochemical and functional properties of some Nigerian cowpea varieties. Pakistan Journal of Nutrition, 7(1), 186-190. Crossref |
||||
Eyasu, Y. (2015). Effect of processing methods on nutritional composition, anti-nutritional factors and functional properties of improved faba bean (Vicia faba L.) varieties grown in Ethiopia, M.Sc. Haramaya University. | ||||
Food Science and Post-harvest Technology (FSPT) (2001). Research strategy. Addis Ababa, Ethiopia: Ethiopian Agricultural Research Organization (EARO). | ||||
Gibson, G. R., & Williams, C. M. (2001). Functional foods concept to product published by 2nd Woodhead Publishing Limited. Crossref |
||||
Gunathilake, K. G. T., Herath T, Wansapala J. (2016). Comparison of physicochemical properties of selected locally available legumes varieties (mung bean, cowpea and soybean), Potravinarstvo® Scientific Journal for Food Industry, 10(1), 424-430. Crossref |
||||
Hamid, S., Muzaffar, S., Wani, I. A., Masoodi, F. A., & Bhat, M. M. (2016). Physical and cooking characteristics of two cowpea cultivars grown in temperate Indian climate. Journal of the Saudi Society of Agricultural Sciences, 15(2), 127-134. Crossref |
||||
Hamid, S., Muzzafar, S., Wani, I. A., & Masoodi, F. A. (2015). Physicochemical and functional properties of two cowpea cultivars grown in temperate Indian climate. Cogent Food & Agriculture, 1(1), 1099418. Crossref |
||||
Henshaw, F. O., McWatters, K. H., Oguntunde, A. O., & Phillips, R. D. (1996). Pasting properties of cowpea flour: effects of soaking and decortication method. Journal of Agricultural and Food Chemistry, 44(7), 1864-1870. Crossref |
||||
Inobeme, A., Nlemadim, A. B., Obigwa, P. A., Ikechukwu, G., Ajai, A. I. (2014). Determination of proximate and mineral compositions of white cowpea beans (Vigna unguiculata) collected from markets in Minna, Nigeria. International Journal of Scientific & Engineering Research, 5(8), 502-504. | ||||
Jackson, G. M., & Varriano‐Marston, E. (1981). Hard‐to‐cook phenomenon in beans: effects of accelerated storage on water absorption and cooking time. Journal of Food Science, 46(3), 799-803. Crossref |
||||
Karuna, D., Noel, G., & Dilip, K. (1996). Food and Nutrition Bulletin 17 (2). United Nations University, Tokyo, Japan. | ||||
Kinsella, J. E. (1979). Functional properties of soy proteins. Journal of the American Oil Chemists' Society, 56(3Part1), 242-258. Crossref |
||||
Liyanage, R., Perera O. S., Weththasinghe, P., Jayawardana, B. C., Vidanaarachchi, J. K., & Sivakanesan, R. (2014). Nutritional properties and antioxidant content of commonly consumed cowpea cultivars in Sri Lanka. Journal of Food Legumes, 27(3), 215-217. | ||||
Maclean, W., Harnly, J., Chen, J., Chevassus-Agnes, S., Gilani, G., Geoffrey, L., & Warwick, P. (2003). Food energy-Methods of analysis and conversion factors.Food and Agriculture organization of the United Nations Technical Workshop Report, vol. 77, 8-9. | ||||
Maina, A. N., Tchiagam, J. N., Gonne, S., Hamadama, Y., Bell, J. M., & Yanou, N. N. (2015). Diallel analysis of polyphenols and phytates content in cowpea (Vigna unguiculata L. Walp.). Scientia Agriculturae, 12(1), 46-51. Crossref |
||||
Makinde, F. M., & Abolarin, O. O. (2020). Effect of post-dehulling treatments on anti-nutritional and functional properties of cowpea (Vigna unguiculata) flour. Journal of Applied Sciences and Environmental Management, 24(9), 1641-1647. Crossref |
||||
Moutaleb, O. H., Amadou, I., Amza T., Zhang, M. (2017). Physico-functional and sensory properties of cowpea flour-based recipes (Akara) and enriched with sweet potato. Journal of Nutrition Health and Food Engineering, 7(4), 325-330. Crossref |
||||
Mune, M. M., Minka, S. R., & Mbome, I. L. (2013). Chemical composition and nutritional evaluation of a cowpea protein concentrate. Global Advanced Research Journal of Food Science and Technology, 2(3), 35-43. | ||||
Obasi, N. E., Unamma, N. C., & Nwofia, G. E. (2014). Effect of dry heat pre-treatment (toasting) on the cooking time of cowpeas (Vigna unguiculata L. Walp). Nigerian Food Journal, 32(2), 16-24. Crossref |
||||
Odedeji, J. O., & Oyeleke, W. A. (2011). Comparative studies on functional properties of whole and dehulled cowpea seed flour (Vigna unguiculata). Pakistan Journal of Nutrition, 10(9), 899-902. Crossref |
||||
Olalekan, A. J., & Bosede, B. F. (2010). Comparative study on chemical composition and functional properties of three Nigerian legumes (jack beans, pigeon pea and cowpea). Journal of Emerging Trends in Engineering and Applied Sciences, 1(1), 89-95. | ||||
Omueti, O., Otegbayo, B., Jaiyeola, O., & Afolabi, O. (2009). Functional properties of complementary diets developed from soybean (Glycine Max), groundnut (Arachis hypogea) and crayfish (Macrobrachium Spp). Electronic Journal of Environmental, Agricultural & Food Chemistry, 8(8), 563-573. | ||||
Owolabi, A. O., Ndidi, U. S., James, B. D., & Amune, F. A. (2012). Proximate, antinutrient and mineral composition of five varieties (improved and local) of cowpea, Vigna unguiculata, commonly consumed in Samaru community, Zaria-Nigeria. Asian Journal of Food Science and Technology, 4(2), 70-72. | ||||
Price, M. L., Hagerman, A. E., & Butler, L. G. (1980). Tannin content of cowpeas, chickpeas, pigeon peas, and mung beans. Journal of Agricultural and Food Chemistry, 28(2), 459-461. Crossref |
||||
Rebello, C. J., Greenway, F. L., & Finley, J. W. (2014). A review of the nutritional value of legumes and their effects on obesity and its related co‐morbidities. Obesity Reviews, 15(5), 392-407. Crossref |
||||
Sathe, S. K., Deshpande, S. S., & Salunkhe, D. K. (1982). Functional properties of lupin seed (Lupinus mutabilis) proteins and protein concentrates. Journal of Food Science, 47(2), 491-497. Crossref |
||||
Schiavone, A., Guo, K., Tassone, S., Gasco, L., Hernandez, E., Denti, R., & Zoccarato, I. (2008). Effects of a natural extract of chestnut wood on digestibility, performance traits, and nitrogen balance of broiler chicks. Poultry Science, 87(3), 521-527. Crossref |
||||
Shimelis, E. A., & Rakshit, S. K. (2005). Proximate composition and physico-chemical properties of improved dry bean (Phaseolus vulgaris L.) varieties grown in Ethiopia. LWT-Food Science and Technology, 38(4), 331-338. Crossref |
||||
Shimelis, E. A., Meaza, M., & Rakshit, S. (2006). Physico-chemical properties, pasting behavior and functional characteristics of flours and starches from improved bean (Phaseolus vulgaris L.) varieties grown in East Africa. Agricultural Engineering International: the CIGR Ejournal. Manuscript FP 05 015. Vol. VIII. | ||||
Tizazu, H., & Emire, S. A. (2010). Chemical composition, physicochemical and functional properties of lupin (Lupinus albus) seeds grown in Ethiopia. African Journal of Food, Agriculture, Nutrition and Development, 10(8), 3029-3046. Crossref |
||||
Todd, B. (2004). Africa's food and nutrition security situation: Where are we and how did we get there? 2020 discussion paper 37, International Food Policy Research Institute, Washington D.C. | ||||
Urbano, G., Lopez-Jurado, M., Aranda, P., Vidal-Valverde, C., Tenorio, E., & Porres, J. (2000). The role of phytic acid in legumes: antinutrient or beneficial function? Journal of physiology and biochemistry, 56(3), 283-294. Crossref |
||||
Vaintraub, I. A., & Lapteva, N. A. (1988). Colorimetric determination of phytate in unpurified extracts of seeds and the products of their processing. Analytical biochemistry, 175(1), 227-230. Crossref |
||||
Vasić, M., Tepić, A., Mihailović, V., Mikić, A., Gvozdanović-Varga, J., Šumić, Z., & Todorović, V. (2012). Phytic acid content in different dry bean and faba bean landraces and cultivars. Romanian Agricultural Research, 29, 79-85. | ||||
Wang, N., Daun, J. K., & Malcolmson, L. J. (2003). Relationship between physicochemical and cooking properties, and effects of cooking on antinutrients, of yellow field peas (Pisum sativum). Journal of the Science of Food and Agriculture, 83(12), 1228-1237. Crossref |
||||
Wani, I. A., Sogi, D. S., & Gill, B. S. (2013). Physical and cooking characteristics of black gram (Phaseolus mungoo L.) cultivars grown in India. International Journal of food Science & Technology, 48(12), 2557-2563. Crossref |
||||
Yadav, N., Kaur, D., Malaviya, R., & Rathore, B. S. (2015). Evaluation of the nutritional antinutritional and antioxidant properties of selected cowpea (Vigna Unguiculata) cultivars. International Journal of Food and Nutritional Sciences, 4(4), 124-130. | ||||
Yewande, B. A., & Thomas, A. O. (2015). Effects of processing methods on nutritive values of Ekuru from two cultivars of beans (Vigna unguiculata and Vigna angustifoliata). African Journal of Biotechnology, 14(21), 1790-1795. Crossref |