ISSN: 2536-7080
Model: Open Access/Peer Reviewed
DOI: 10.31248/RJFSN
Start Year: 2016
Email: rjfsn@integrityresjournals.org
https://doi.org/10.31248/RJFSN2023.155 | Article Number: 9C2DB0552 | Vol.8 (1) - April 2023
Received Date: 17 February 2023 | Accepted Date: 16 March 2023 | Published Date: 30 April 2023
Authors: Peninah Njiraine Ngoda* , Christopher Elliot , Lisa Connolly and Caroline Frizzelle
Keywords: testosterone., Androgenic potencies, gene assays, phytoestrogens, TARM-Luc Cell Line, transcriptive activity.
The ability of the prostate gland to grow is a hormone-dependent process that is regulated by both androgenic and estrogenic factors. Phytoestrogens (PEs) are bioactive compounds with the estrogenic activity which may impact hormones and health in general. The TARM-Luc cell line was used in this study to investigate the androgenic potencies of phytoestrogens with and without co-incubated testosterone. The transcriptional activities (TAs) of 10 PEs (apigenin, daidzein, daidzin, equol, enterodiol, formononetin, genistein, genistin, glycitein, and matairesinol) were assessed as induction of the expressed luciferase activity, which is connected with the biological effects. These effects were compared to transcription caused by testosterone (50 nM) hormone (standards) in vitro. Androgenic receptors in the TARM-Luc cell line were used in the reporter gene assay tool. The standard curve for hormone standard was determined and the EC50 (M) for testosterone was (3.7 x 10-9 M). The order of androgenic potency of two PEs from their EC50s was apigenin (4.5 X 10-6 M) > glycitein (4.8 X 10-5 M). Dose-response curves in the TARM-Luc cell line, for the other eight PEs, were not established as most were anti-androgenic. The percent androgenic potency for apigenin was 8.2 x 10-2 M and for glycitein was 7.7 x 10-3 M relative to testosterone whose percent potency was arbitrarily assigned a value of 100. PEs inhibition or enhancement on the hormone testosterone (50 nM) -dependent transcription was dose-dependent and chemically specific. PEs enhanced testosterone hormone-dependent transcription and gave more additive and synergistic bioactive effects in a dose-dependent manner. Two PEs, apigenin and glycitein, were weak agonists in TARM-Luc cell line. The additive and synergistic effects of the PEs in combination with testosterone (50 nM) were a novel discovery in this study and relevant since it could have endocrine disrupting effects.
Ain, U. Q., David, M., Ijaz, U. M., & Jahan, S. (2021). Assessment of antiandrogenic and antispermatogenic activity of Hedera nepalensis in adult male rats. Andrologia Willey; 54(3), 1-10. Crossref |
||||
Aronson, K. J. (2016). Meyler's side effects of drugs (Sixteenth Edition). Elsevier. Pp. 755-757. | ||||
Basak, S., Pookot, D., Noonan, E. J., & Dahiya, R. (2008). Genistein down-regulates androgen receptor by modulating HDAC6-Hsp90 chaperone function. Molecular Cancer Therapeutics, 7(10), 3195-3202. Crossref |
||||
Bovee, H. F. T., Helsdingen, R. J. R., Koks, D. P., Kuiper, A. H., Hoogenboom, P. A. L. R., & Keijer, J. (2004). Development of a rapid yeast estrogen bioassay, based on the expression of a green fluorescent protein. Gene, 325,187-200. Crossref |
||||
Cai, X., Liu, M., Zhang, B., Zhao, S. J., & Jiang, S. W. (2021). Phytoestrogens for the Management of Endometriosis: Findings and Issues. Pharmaceuticals, 14(6), 1-22. Crossref |
||||
Connolly, L., Cai, K., Van Der Heiden, E., Scippo, M., Muller, M., Tarbin, J., & Elliott, C. (2009). Detection of glucocorticoid bioactivity in bovine urine samples using a reporter gene assay. Analytica Chimica Acta, 637(1-2), 321-327. Crossref |
||||
Domínguez-López, I., Yago-Aragón, M., Salas-Huetos, A., Tresserra-Rimbau, A., & Hurtado-Barroso, S. (2020). Effects of dietary phytoestrogens on hormones throughout a human lifespan: A review. Nutrients, 12(8), 2456. Crossref |
||||
Forest, M. G., Sizonenko, P. C., Cathiard, A. M., & Bertrand, J. (1974). Hypophyso-gonadal function in humans during the first year of life: Evidence for testicular activity in early infancy. The Journal of Clinical Investigation, 53(3), 819-828. Crossref |
||||
Garmpis, N., Damaskos, C., Garmpi, A., Valsami, S., & Dimitroulis, D. (2019). Pharmacogenetics of Histone Deacetylase Inhibitors in Cancer. In: Cacabelos R. (ed.), Pharmacoepigenetics (pp. 501-521). Academic Press. Crossref |
||||
Gorzkiewicz, J., Bartosz, G., & Sadowska-Bartosz, I. (2021). The potential effects of phytoestrogens: The role in neuroprotection. Molecules, 26(10), 1-12. Crossref |
||||
Jing, H., Pivik, R. T., Gilchrist, J. M., & Badger, T. M. (2008). No difference was indicated in electroencephalographic power spectral analysis in 3- and 6-month-old infants fed soy- or milk-based formula. Maternal & child nutrition, 4(2), 136-145. Crossref |
||||
Kang, S. C., Lee, C. M., Choung, E.S., Bak, J. P., Bae, J. J., Yoo, H. S., Kwak, J. H., & Zee, O. P. (2008). Anti-proliferative effects of estrogen receptor-modulating compounds isolated from Rheum palmatum. Archives of Pharmacal Research, 31(6), 722-726. Crossref |
||||
Khalil, N., Chen, A., & Lee, M. (2014). Endocrine disruptive compounds and cardio-metabolic risk factors in children. Current Opinion in Pharmacology, 19, 120-124. Crossref |
||||
Kudo, Y., Endo, S., Tanio,M.; Saka, T.; Himura, R., Abe, N., Takeda, M., Yamaguchi, E., Yoshino,Y., Arai, Y., Kashiwagi, H., Oyama, M., Itoh, A. M., Fujimoto, N., & Ikari, A. (2022). Antiandrogenic effects of a polyphenol in Carex kobomugi through inhibition of androgen synthetic pathway and down-regulation of androgen receptor in prostate cancer cell lines. International Journal of Molecular Sciences, 23(22), 1-20. Crossref |
||||
Lephart, E.D. (2021). Phytoestrogens (resveratrol and equol) for estrogen-deficient skin-controversies/misinformation versus anti-aging in vitro and clinical evidence via nutraceutical-cosmetics. International Journal of Molecular Sciences, 22(20), 1-26. Crossref |
||||
LoPresti, P. (2021). HDAC6 in diseases of cognition and of neurons. Cells, 10(12), 1-15. Crossref |
||||
Masser, A. E., Kandasamy, G., Kaimal, J. M., & Andréasson, C. (2016). Luciferase NanoLuc as a reporter for gene expression and protein levels in Saccharomyces cerevisiae. Yeast, 33(5), 191-200. Crossref |
||||
Masuku, N. P, Unuofin, J. O., & Lebelo, S. L. (2020). Phytochemical content, antioxidant activities and androgenic properties of four South African medicinal plants. Journal of Herbmed Pharmacology; 9(3), 245-256. Crossref |
||||
Memariani, Z., Gorji, N., Moeini, R., & Farzaei, H. M. (2020). Traditional uses. In: Nabavi, S. M., Suntar, I., Barreca, D., & Khan H. (eds.). Phytonutrients in food from traditional to rational usage (pp. 23-66). Woodhead Publishing Series. Crossref |
||||
Montani, C., Penza, M., Jeremic, M., Biasiotto, G., La Sala, G., De Felici, M., Ciana, P., Maggi, A., & Di Lorenzo, D. (2008). Genistein is an efficient estrogen in the whole body throughout mouse development. Toxicological Sciences, 103(1), 57-67. Crossref |
||||
Mosmann, T. (1983). Rapid colourimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1-2), 55-63. Crossref |
||||
Mostrom, M., & Evans, J. T. (2018). Phytoestrogens. In: Gupta, R.C. (ed). Veterinary toxicology: Basic and clinical principles (pp. 817-833). Academic Press. Crossref |
||||
Movafagh, S., & Munson, A. (2019). Histone deacetylase inhibitors in cancer prevention and therapy. In: Bishayee, A., & Bhatia, D. (eds.), Epigenetics of cancer prevention (pp. 75-105). Academic Press. Crossref |
||||
Nagel, S. C., Vom Saal, F. S., & Welshons, W. V. (1998). The effective free fraction of estradiol and xenoestrogens in human serum measured by whole-cell uptake assays: Physiology of delivery modifies estrogenic activity. Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine; 217(3), 300-309. Crossref |
||||
Napora, J. K., Short, R. G., Muller, D. C., Carlson, O. D., Odetunde, J. O., Xu, X., Carducci, M., Travison, T. G., Maggio, M., Egan, J. M., & Basaria, S. (2011). High-dose Isoflavones do not improve metabolic and inflammatory parameters in androgen-deprived men with prostate cancer. Journal of andrology, 32(1), 40-48. Crossref |
||||
Ni, Y. D., Hong, W. J., Zhou, Y. C., Grossmann, R., & Zhao, R. Q. (2010). Dual effects of daidzein on chicken hepatic vitellogenin II expression and estrogen receptor-mediated transactivation in vitro. Steroids, 75(3), 245-251. Crossref |
||||
Ososki, A. L., & Kennelly, E.J. (2003). Phytoestrogens: A review of the present state of research. Phytotherapy Research, 17(8), 845-869. Crossref |
||||
Padmanabhan, V., Jacob Moeller, J., & Muraly Puttabyatappa, M. (2021). Impact of gestational exposure to endocrine disrupting chemicals on pregnancy and birth outcomes. In: Vandenberg, L. N., & Turgeon, J. L. (eds.). Advances in pharmacology (pp. 279-346). Academic Press. Crossref |
||||
Park, C., Kim, G., On, J., Pyo, H., Park, J., & Cho, S. (2022). Sex-specific effects of bisphenol S with tissue-specific responsiveness in adult zebrafish: The antiandrogenic and antiestrogenic effects. Ecotoxicology and Environmental Safety, 229, 1-11. Crossref |
||||
Paterni, I., Granchi, C., & Minutolo, F. (2017). Risks and benefits related to alimentary exposure to xenoestrogens. Critical Reviews in Food Science and Nutrition, 57(16), 3384-3404. Crossref |
||||
Patisaul, H. B., & Jefferson, W. (2010). The pros and cons of phytoestrogens. Frontiers in Neuroendocrinology; 31(4), 400-19. Crossref |
||||
Patrão, C. C. T. M., Silva, R. J. E., & Avellar, W. C. M. (2009). Androgens and the male reproductive tract: an overview of classical roles and current perspectives. Arquivos Brasileiros de Endocrinologia, 53(8), 934-945. Crossref |
||||
Puranik, V. N., Srivastava, P., Bhatt, G., Mary, J. S. J. D., Limaye, M. A., & Sivaraman, J. (2019). Determination and analysis of agonist and antagonist potential of naturally occurring flavonoids for estrogen receptor (ERα) by various parameters and molecular modelling approach.Scientific Reports, 9(1), 1-11. Crossref |
||||
Raivio, T., Toppari, J., Kaleva, M., Virtanen, H., Haavisto, A. M., Dunkel, L., & Janne, O. A. (2003). Serum androgen bioactivity in cryptorchid and non-cryptorchid boys during the postnatal reproductive hormone surge. The Journal of clinical endocrinology and metabolism, 88(6), 2597-2599. Crossref |
||||
Schug, T. T., Abagyan, R., Blumberg, B., Collins, T. J., Crews, D., Defur, P. L., & Myers, J. P. (2013). Designing endocrine disruption out of the next generation of chemicals. Green Chem. Green Chemistry, 15(15), 181-181. Crossref |
||||
Sharath, J., Taj, R.A.S., & Bhagya, M. (2022). Phytochemical characterisation of argemone mexicana leaf extracts an evidence for its antiandrogenic and antioxidant activities. Indian Journal of Pharmaceutical Education and Research, 56(2), s294-s302. Crossref |
||||
Sirotkin, A. V. (2014). Phytoestrogens and their effects. European Journal of Pharmacology, 741(1), 230-236. Crossref |
||||
Soto, A. M., Maffini, M. V., Schaeberle, C. M., & Sonnenschein, C. (2006). Strengths and weaknesses of in vitro assays for estrogenic and androgenic activity. Best practice & research. Clinical endocrinology & metabolism, 20(1), 15-33. Crossref |
||||
Svobodová, K., & Cajthaml, T. (2010). New in vitro reporter gene bioassays for screening of hormonally active compounds in the environment. Applied Microbiology and Biotechnology, 88(4), 839-847. Crossref |
||||
Traish, M. A. (2017). Negative impact of testosterone deficiency and 5α-reductase inhibitors therapy on metabolic and sexual function in men. In: Mauvais-Jarvis, F. (ed.). Sex and gender factors affecting metabolic homeostasis, diabetes and obesity (pp. 473-526). Springer International Publishing AG. Crossref |
||||
Van Der Linden, S. C., Von Bergh, A. R. M., Van Vught-Lussenburg, B. M. A., Jonker, L. R. A., Teunis, M., Krul, C. A. M., & Van Der Burg, B. (2014). Development of a panel of high-throughput reporter-gene assays to detect genotoxicity and oxidative stress. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 760, 23-32. Crossref |
||||
Willemsen, P., Scippo, M.L., Kausel, G., Figueroa, J., Maghuin-Rogister, G., Martial, J.A., & Muller, M. (2004). Use of reporter cell lines for detection of endocrine-disrupter activity. Analytical and Bioanalytical Chemistry, 378(3), 655-663. Crossref |