ISSN: 2536-7080
Model: Open Access/Peer Reviewed
DOI: 10.31248/RJFSN
Start Year: 2016
Email: rjfsn@integrityresjournals.org
https://doi.org/10.31248/RJFSN2021.119 | Article Number: D90BEF451 | Vol.7 (4) - October 2022
Received Date: 12 September 2021 | Accepted Date: 11 October 2021 | Published Date: 30 October 2022
Authors: Ogori A. F.* and Alimi Taofeek
Keywords: legumes, cereals, food system, non-food systems.
The starch chemistry aspect of amylose and amylopectin fractions along with their contributory roles in defining starch food behavior; such as in gels formation, pasting quality, swellability, dextrinization and viscosity from various sources such as legumes, root, tubers and cereals were reviewed. Chemical and physical modifications of starch like cationation, esterification, acetylation, alkalization and annealing, which somehow weakens glucose linked bond and releasing fractional starch moieties have shown to modify characteristic behavior of starch in food systems and for non-food systems. The application of starch in food and non-food systems were envisaged from resistant to non-resistance starches in legumes, roots and tubers and these were observed to be better in functional characteristic than cereal starches.
Adebowale, K. O., & Lawal, O. S. (2003). Functional properties and retrogradation behaviour of native and chemically modified starch of mucuna bean (Mucuna pruriens). Journal of the Science of Food and Agriculture, 83, 1541-1546. Crossref |
||||
Alves, R. M. L., Grossmann, M. V. E., & Silva, R. S. S. F. (1999). Gelling properties of extruded yam (Dioscorea alata) starch. Food Chemistry, 67(2), 123-127. Crossref |
||||
Bassi, S., Maningat, C. C., Chinnaswamy, R., Gray, D. R., & Nie, L. (1997). U.S. Patent No. 5,610,277. Washington, DC: U.S. Patent and Trademark Office. Link |
||||
Bednar, G. E., Patil, A. R., Murray, S. M., Grieshop, C. M., Merchen, N. R., & Fahey Jr, G. C. (2001). Starch and fiber fractions in selected food and feed ingredients affect their small intestinal digestibility and fermentability and their large bowel fermentability in vitro in a canine mode. The Journal of nutrition, 131(2), 276-286. Crossref |
||||
Belitz, H. D., Grosch, W., & Schieberle, P. (2009). Protein chemistry (4th edition). Springer. | ||||
Chatakanonda, P., Varavinit, S., & Chinachoti, P. (2000a). Effect of crosslinking on thermal and microscopic transitions of rice starch. LWT-Food Science and Technology, 33(4), 276-284. Crossref |
||||
Chatakanonda, P., Varavinit, S., & Chinachoti, P. (2000b). Relationship of gelatinization and recrystallization of cross‐linked rice to glass transition temperature. Cereal Chemistry, 77(3), 315-319. Crossref |
||||
Choi, S. G., & Kerr, W. L. (2003). Effects of chemical modification of wheat starch on molecular mobility as studied by pulsed 1H NMR. LWT-Food Science and Technology, 36(1), 105-112. Crossref |
||||
Cornel, H. (2004). The functionality of wheat starch. In: Eliasson, A. C. (ed.). Starch in food: Structure, function and applications. Boca Raton, FL: CRC Press LLC. Crossref |
||||
Dhull, S. B., Malik, T., Kaur, R., Kumar, P., Kaushal, N., & Singh, A. (2021). Banana Starch: Properties Illustration and Food Applications-A Review. Starch‐Stärke, 73(1-2), 2000085. Crossref |
||||
Englyst, H. N., Kingman, S. M., Hudson, G. J., & Cummings, J. H. (1996). Measurement of resistant starch in vitro and in vivo. British Journal of Nutrition, 75(5), 749-755. Crossref |
||||
Hoover, R., Hughes, T., Chung, H. J., & Liu, Q. (2010). Composition, molecular structure, properties, and modification of pulse starches: A review. Food research international, 43(2), 399-413. Crossref |
||||
James, M. G., Denyer, K., & Myers, A. M. (2003). Starch synthesis in the cereal endosperm. Current opinion in plant biology, 6(3), 215-222. Crossref |
||||
Jiang, Q., Gao, W., Li, X., Man, S., Shi, Y., Yang, Y., Huang, L., & Liu, C. (2014). Comparative susceptibilities to alkali-treatment of A-, B-and C-type starches of Dioscorea zingiberensis, Dioscorea persimilis and Dioscorea opposita. Food Hydrocolloids, 39, 286-294. Crossref |
||||
Kaur, L., Dhull, S. B., Kumar, P., & Singh, A. (2020). Banana starch: Properties, description, and modified variations-A review. International Journal of Biological Macromolecules, 165(Part B), 2096-2102 Crossref |
||||
Kaur, L., Singh, N., & Singh, J. (2004). Factors influencing the properties of hydroxypropylated potato starches. Carbohydrate polymers, 55(2), 211-223. Crossref |
||||
Lawal, O. S., Lechner, M. D., & Kulicke, W. M. (2008). Single and multi-step carboxymethylation of water yam (Dioscorea alata) starch: Synthesis and characterization. International Journal of Biological Macromolecules, 42(5), 429-435. Crossref |
||||
Lawal, O. S., Ogundiran, O. O., Adesogan, E. K., Ogunsanwo, B. M., & Sosanwo, O. A. (2008). Effect of hydroxypropylation on the properties of white yam (Dioscorea rotundata) starch. Starch‐Stärke, 60(7), 340-348. Crossref |
||||
Lineback, D. R., & Rasper, V. F. (1988). Wheat carbohydrates. Wheat: chemistry and technology. Volume I., (Ed. 3), 277-372. | ||||
Mahadevamma, S., & Tharanathan, R. N. (2004). Processing of legumes: resistant starch and dietary fiber contents. Journal of Food Quality, 27(4), 289-303. Crossref |
||||
Maningat, C. C., & Bassi, S. (1999). Starch Technology. In: Proceedings of the International Starch Technology Conference. Urbana, IL, June 7 - 9. | ||||
Maningat, C. C., & Seib, P. A. (1997). Wheat quality. In: Proceedings of the International Wheat Quality Conference, Manhattan. Pp. 261-284. | ||||
Maningat, C. C., DeMeritt, G. K., Chinnaswamy, R., & Bassi, S. D. (1999). Properties and applications of texturized wheat gluten. Cereal foods world, 44(9), 650-655. | ||||
Nuwamanya, E., Baguma, Y., Kawuki, R. S., & Rubaihayo, P. R. (2008). Quantification of starch physicochemical characteristics in a cassava segregating population. African Crop Science Journal, 16(3), 191-202. Crossref |
||||
Nuwamanya, E., Baguma, Y., Wembabazi, E., & Rubaihayo, P. (2011). A comparative study of the physicochemical properties of starches from root, tuber and cereal crops. African Journal of Biotechnology, 10(56), 12018-12030. | ||||
Odeku, O. A., & Picker-Freyer, K. M. (2009b). Evaluation of the material and tablet formation properties of modified forms of Dioscorea starches. Drug Development and Industrial Pharmacy, 35(11), 1389-1406. Crossref |
||||
Seow, C. C., & Thevamalar, K. (1993). Internal plasticization of granular rice starch by hydroxypropylation: Effects on phase transitions associated with gelatinization. Starch‐Stärke, 45(3), 85-88. Crossref |
||||
Silanere, L. M., Malleshi, N. G., Mahadevamma, L., & Tharanathan, R. N. (1999). Resistant starch from differently processed rice and ragi (finger millet). European Food Research and Technology, 209, 32-37. Crossref |
||||
Singh, J., Kaur, L., & McCarthy, O. J. (2007). Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications-A review. Food hydrocolloids, 21(1), 1-22. Crossref |
||||
Singla, D., Singh, A., Dhull, S. B., Kumar, P., Malik, T., & Kumar, P. (2020). Taro starch: Isolation, morphology, modification and novel applications concern-A review. International Journal of Biological Macromolecules. 163, 1283-1290. Crossref |
||||
Son Trinh, K., Joo Lee, C., Jun Choi, S., & Wha Moon, T. (2012). Hydrothermal Treatment of Water Yam Starch in a Non‐granular State: Slowly Digestible Starch Content and Structural Characteristics. Journal of Food Science, 77(6), C574-C582. Crossref |
||||
Takaoka, M., Watanabe, S., Sassa, H., Yamamori, M., Nakamura, T., Sasakuma, T., & Hirano, H. (1997). Structural characterization of high molecular weight starch granule-bound proteins in wheat (Triticum aestivum L.). Journal of Agricultural and Food Chemistry, 45(8), 2929-2934. Crossref |
||||
Tattiyakul, J., Naksriarporn, T., Pradipasena, P., & Miyawaki, O. (2006). Effect of moisture on hydrothermal modification of yam Dioscorea hispida Dennst starch. Starch‐Stärke, 58(3‐4), 170-176. Crossref |
||||
Tester, R. F., & Morrison, W. R. (1990). Swelling and gelatinization of cereal starches. II. Waxy rice starches. Cereal Chemistry, 67(6), 558-563. | ||||
Waduge, R. N., Kalinga, D. N., Bertoft, E., & Seetharaman, K. (2014). Molecular structure and organization of starch granules from developing wheat endosperm. Cereal Chemistry, 91(6), 578-586. Crossref |
||||
Wang, M. Q., Xu, Z. R., Sun, J. Y., & Kim, B. G. (2008). Effects of enzyme supplementation on growth, intestinal content viscosity, and digestive enzyme activities in growing pigs fed rough rice-based diet. Asian-Australasian Journal of Animal Sciences, 21(2), 270-276. Crossref |
||||
Wang, S., Yu, J., Zhu, Q., Yu, J., & Jin, F. (2009). Granular structure and allomorph position in C-type Chinese yam starch granule revealed by SEM, 13C CP/MAS NMR and XRD. Food Hydrocolloids, 23(2), 426-433. Crossref |
||||
Wattanachant, S., Muhammad, K. M. A. T., Hashim, D. M., & Rahman, R. A. (2003). Effect of crosslinking reagents and hydroxypropylation levels on dual-modified sago starch properties. Food Chemistry, 80(4), 463-471. Crossref |
||||
Whistler, R. L., & Daniel, J. R. (2009). Molecular structure of starch. In: Whistler, R. L., Bemiller, J. N., & Paschall. E. F. (eds.). Starch: Chemistry and Technology (Second edition). Elsevier Inc. Pp. 153-182 Crossref |
||||
Wurzburg, O. B. (1986). Modified starches-properties and uses. Boca Acada press. |