RESEARCH JOURNAL OF FOOD SCIENCE AND NUTRITION
Integrity Research Journals

ISSN: 2536-7080
Model: Open Access/Peer Reviewed
DOI: 10.31248/RJFSN
Start Year: 2016
Email: rjfsn@integrityresjournals.org


Starch source, modification and food application

https://doi.org/10.31248/RJFSN2021.119   |   Article Number: D90BEF451   |   Vol.7 (4) - October 2022

Received Date: 12 September 2021   |   Accepted Date: 11 October 2021  |   Published Date: 30 October 2022

Authors:  Ogori A. F.* and Alimi Taofeek

Keywords: legumes, cereals, food system, non-food systems.

The starch chemistry aspect of amylose and amylopectin fractions along with their contributory roles in defining starch food behavior; such as in gels formation, pasting quality, swellability, dextrinization and viscosity from various sources such as legumes, root, tubers and cereals were reviewed. Chemical and physical modifications of starch like cationation, esterification, acetylation, alkalization and annealing, which somehow weakens glucose linked bond and releasing fractional starch moieties have shown to modify characteristic behavior of starch in food systems and for non-food systems. The application of starch in food and non-food systems were envisaged from resistant to non-resistance starches in legumes, roots and tubers and these were observed to be better in functional characteristic than cereal starches.

Adebowale, K. O., & Lawal, O. S. (2003). Functional properties and retrogradation behaviour of native and chemically modified starch of mucuna bean (Mucuna pruriens). Journal of the Science of Food and Agriculture, 83, 1541-1546.
Crossref
 
Alves, R. M. L., Grossmann, M. V. E., & Silva, R. S. S. F. (1999). Gelling properties of extruded yam (Dioscorea alata) starch. Food Chemistry, 67(2), 123-127.
Crossref
 
Bassi, S., Maningat, C. C., Chinnaswamy, R., Gray, D. R., & Nie, L. (1997). U.S. Patent No. 5,610,277. Washington, DC: U.S. Patent and Trademark Office.
Link
 
Bednar, G. E., Patil, A. R., Murray, S. M., Grieshop, C. M., Merchen, N. R., & Fahey Jr, G. C. (2001). Starch and fiber fractions in selected food and feed ingredients affect their small intestinal digestibility and fermentability and their large bowel fermentability in vitro in a canine mode. The Journal of nutrition, 131(2), 276-286.
Crossref
 
Belitz, H. D., Grosch, W., & Schieberle, P. (2009). Protein chemistry (4th edition). Springer.
 
Chatakanonda, P., Varavinit, S., & Chinachoti, P. (2000a). Effect of crosslinking on thermal and microscopic transitions of rice starch. LWT-Food Science and Technology, 33(4), 276-284.
Crossref
 
Chatakanonda, P., Varavinit, S., & Chinachoti, P. (2000b). Relationship of gelatinization and recrystallization of cross‐linked rice to glass transition temperature. Cereal Chemistry, 77(3), 315-319.
Crossref
 
Choi, S. G., & Kerr, W. L. (2003). Effects of chemical modification of wheat starch on molecular mobility as studied by pulsed 1H NMR. LWT-Food Science and Technology, 36(1), 105-112.
Crossref
 
Cornel, H. (2004). The functionality of wheat starch. In: Eliasson, A. C. (ed.). Starch in food: Structure, function and applications. Boca Raton, FL: CRC Press LLC.
Crossref
 
Dhull, S. B., Malik, T., Kaur, R., Kumar, P., Kaushal, N., & Singh, A. (2021). Banana Starch: Properties Illustration and Food Applications-A Review. Starch‐Stärke, 73(1-2), 2000085.
Crossref
 
Englyst, H. N., Kingman, S. M., Hudson, G. J., & Cummings, J. H. (1996). Measurement of resistant starch in vitro and in vivo. British Journal of Nutrition, 75(5), 749-755.
Crossref
 
Hoover, R., Hughes, T., Chung, H. J., & Liu, Q. (2010). Composition, molecular structure, properties, and modification of pulse starches: A review. Food research international, 43(2), 399-413.
Crossref
 
James, M. G., Denyer, K., & Myers, A. M. (2003). Starch synthesis in the cereal endosperm. Current opinion in plant biology, 6(3), 215-222.
Crossref
 
Jiang, Q., Gao, W., Li, X., Man, S., Shi, Y., Yang, Y., Huang, L., & Liu, C. (2014). Comparative susceptibilities to alkali-treatment of A-, B-and C-type starches of Dioscorea zingiberensis, Dioscorea persimilis and Dioscorea opposita. Food Hydrocolloids, 39, 286-294.
Crossref
 
Kaur, L., Dhull, S. B., Kumar, P., & Singh, A. (2020). Banana starch: Properties, description, and modified variations-A review. International Journal of Biological Macromolecules, 165(Part B), 2096-2102
Crossref
 
Kaur, L., Singh, N., & Singh, J. (2004). Factors influencing the properties of hydroxypropylated potato starches. Carbohydrate polymers, 55(2), 211-223.
Crossref
 
Lawal, O. S., Lechner, M. D., & Kulicke, W. M. (2008). Single and multi-step carboxymethylation of water yam (Dioscorea alata) starch: Synthesis and characterization. International Journal of Biological Macromolecules, 42(5), 429-435.
Crossref
 
Lawal, O. S., Ogundiran, O. O., Adesogan, E. K., Ogunsanwo, B. M., & Sosanwo, O. A. (2008). Effect of hydroxypropylation on the properties of white yam (Dioscorea rotundata) starch. Starch‐Stärke, 60(7), 340-348.
Crossref
 
Lineback, D. R., & Rasper, V. F. (1988). Wheat carbohydrates. Wheat: chemistry and technology. Volume I., (Ed. 3), 277-372.
 
Mahadevamma, S., & Tharanathan, R. N. (2004). Processing of legumes: resistant starch and dietary fiber contents. Journal of Food Quality, 27(4), 289-303.
Crossref
 
Maningat, C. C., & Bassi, S. (1999). Starch Technology. In: Proceedings of the International Starch Technology Conference. Urbana, IL, June 7 - 9.
 
Maningat, C. C., & Seib, P. A. (1997). Wheat quality. In: Proceedings of the International Wheat Quality Conference, Manhattan. Pp. 261-284.
 
Maningat, C. C., DeMeritt, G. K., Chinnaswamy, R., & Bassi, S. D. (1999). Properties and applications of texturized wheat gluten. Cereal foods world, 44(9), 650-655.
 
Nuwamanya, E., Baguma, Y., Kawuki, R. S., & Rubaihayo, P. R. (2008). Quantification of starch physicochemical characteristics in a cassava segregating population. African Crop Science Journal, 16(3), 191-202.
Crossref
 
Nuwamanya, E., Baguma, Y., Wembabazi, E., & Rubaihayo, P. (2011). A comparative study of the physicochemical properties of starches from root, tuber and cereal crops. African Journal of Biotechnology, 10(56), 12018-12030.
 
Odeku, O. A., & Picker-Freyer, K. M. (2009b). Evaluation of the material and tablet formation properties of modified forms of Dioscorea starches. Drug Development and Industrial Pharmacy, 35(11), 1389-1406.
Crossref
 
Seow, C. C., & Thevamalar, K. (1993). Internal plasticization of granular rice starch by hydroxypropylation: Effects on phase transitions associated with gelatinization. Starch‐Stärke, 45(3), 85-88.
Crossref
 
Silanere, L. M., Malleshi, N. G., Mahadevamma, L., & Tharanathan, R. N. (1999). Resistant starch from differently processed rice and ragi (finger millet). European Food Research and Technology, 209, 32-37.
Crossref
 
Singh, J., Kaur, L., & McCarthy, O. J. (2007). Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications-A review. Food hydrocolloids, 21(1), 1-22.
Crossref
 
Singla, D., Singh, A., Dhull, S. B., Kumar, P., Malik, T., & Kumar, P. (2020). Taro starch: Isolation, morphology, modification and novel applications concern-A review. International Journal of Biological Macromolecules. 163, 1283-1290.
Crossref
 
Son Trinh, K., Joo Lee, C., Jun Choi, S., & Wha Moon, T. (2012). Hydrothermal Treatment of Water Yam Starch in a Non‐granular State: Slowly Digestible Starch Content and Structural Characteristics. Journal of Food Science, 77(6), C574-C582.
Crossref
 
Takaoka, M., Watanabe, S., Sassa, H., Yamamori, M., Nakamura, T., Sasakuma, T., & Hirano, H. (1997). Structural characterization of high molecular weight starch granule-bound proteins in wheat (Triticum aestivum L.). Journal of Agricultural and Food Chemistry, 45(8), 2929-2934.
Crossref
 
Tattiyakul, J., Naksriarporn, T., Pradipasena, P., & Miyawaki, O. (2006). Effect of moisture on hydrothermal modification of yam Dioscorea hispida Dennst starch. Starch‐Stärke, 58(3‐4), 170-176.
Crossref
 
Tester, R. F., & Morrison, W. R. (1990). Swelling and gelatinization of cereal starches. II. Waxy rice starches. Cereal Chemistry, 67(6), 558-563.
 
Waduge, R. N., Kalinga, D. N., Bertoft, E., & Seetharaman, K. (2014). Molecular structure and organization of starch granules from developing wheat endosperm. Cereal Chemistry, 91(6), 578-586.
Crossref
 
Wang, M. Q., Xu, Z. R., Sun, J. Y., & Kim, B. G. (2008). Effects of enzyme supplementation on growth, intestinal content viscosity, and digestive enzyme activities in growing pigs fed rough rice-based diet. Asian-Australasian Journal of Animal Sciences, 21(2), 270-276.
Crossref
 
Wang, S., Yu, J., Zhu, Q., Yu, J., & Jin, F. (2009). Granular structure and allomorph position in C-type Chinese yam starch granule revealed by SEM, 13C CP/MAS NMR and XRD. Food Hydrocolloids, 23(2), 426-433.
Crossref
 
Wattanachant, S., Muhammad, K. M. A. T., Hashim, D. M., & Rahman, R. A. (2003). Effect of crosslinking reagents and hydroxypropylation levels on dual-modified sago starch properties. Food Chemistry, 80(4), 463-471.
Crossref
 
Whistler, R. L., & Daniel, J. R. (2009). Molecular structure of starch. In: Whistler, R. L., Bemiller, J. N., & Paschall. E. F. (eds.). Starch: Chemistry and Technology (Second edition). Elsevier Inc. Pp. 153-182
Crossref
 
Wurzburg, O. B. (1986). Modified starches-properties and uses. Boca Acada press.