ISSN: 2536-7064
Model: Open Access/Peer Reviewed
DOI: 10.31248/JBBD
Start Year: 2016
Email: jbbd@integrityresjournals.org
https://doi.org/10.31248/JBBD2025.231 | Article Number: F65D6CE12 | Vol.10 (2) - June 2025
Received Date: 13 March 2025 | Accepted Date: 24 May 2025 | Published Date: 30 June 2025
Authors: Kyahar, I. F.* and Olorunfemi, P. O.
Keywords: Antibacterial susceptibility, bacterial resistance, cross-resistance, disinfectant bacteria isolates, infection control protocols.
The presence of resistant plasmids (R-plasmids) in microorganisms allows them to evade antibiotics, complicating infection treatment. Disinfectants, though essential in infection control, can become contaminated, contributing to antimicrobial resistance in hospital environments. This study investigated plasmid-mediated antibiotic resistance in bacteria isolated from used disinfectants across four hospitals by evaluating their susceptibility before and after plasmid curing. A total of 100 disinfectant samples (both used and unused diluted forms) were collected, with 21% found contaminated, 86% of which were Gram-negative bacteria. The most frequent isolates included Pseudomonas aeruginosa (24%), Klebsiella pneumoniae (19%), Escherichia coli (14%), Proteus vulgaris (14%), Salmonella typhi (14%), and Staphylococcus aureus (14%). Antibiotic susceptibility tests showed that 81% of isolates were sensitive to all 17 antibiotics tested, while 19% exhibited multidrug resistance, particularly Pseudomonas, Klebsiella, Salmonella, and E. coli. Ampicillin showed the highest resistance, while ciprofloxacin and levofloxacin retained effectiveness. Plasmid curing revealed partial plasmid-mediated resistance in key bacteria. Before curing, Salmonella typhi, Klebsiella pneumoniae, Pseudomonas aeruginosa, and E. coli resisted 15, 9, 8, and 7 antibiotics, respectively (100%). After curing, resistance reduced to 67% in Salmonella, 78% in Klebsiella, 88% in Pseudomonas, and 57% in E. coli, indicating loss of resistance to specific antibiotics. This suggests that resistance to erythromycin, amoxicillin, norfloxacin, and septrin in Salmonella; norfloxacin and septrin in Klebsiella; septrin in Pseudomonas; and norfloxacin, chloramphenicol, and septrin in E. coli was plasmid mediated.
Adeshina, G. O., Onaolapo, J. A., Ehinmidu, J. O., & Odama, L. E. (2010). Phytochemical and antimicrobial studies of the ethyl acetate extract of Alchornea cordifolia leaf found in Abuja, Nigeria. Journal of Medicinal Plants Research, 4(8), 649-658. | ||||
Ayliffe, G. A. J., Collins, B. J., Lowbury, E. J. L., Babb, J. R., & Lilly, H. A. (1967). Ward floors and other surfaces as reservoirs of hospital infection. Epidemiology & Infection, 65(4), 515-536. https://doi.org/10.1017/S0022172400046052 |
||||
Ayliffe, G. A., Lowbury, E. J. L., Geddes, A. M., & Williams, J. D. (Eds.). (1992). Control of hospital infection: A practical handbook (pp. 18-381), 4th Edition. London. The Oxford University. | ||||
Beier, R. C., Foley, S. L., Davidson, M. K., White, D. G., McDermott, P. F., Bodeis‐Jones, S., Zhao, S., Andrews, K., Crippen, T. L., Sheffield, C. L., & Nisbet, D. J. (2015). Characterisation of antibiotic and disinfectant susceptibility profiles among Pseudomonas aeruginosa veterinary isolates recovered during 1994-2003. Journal of applied microbiology, 118(2), 326-342. https://doi.org/10.1111/jam.12707 |
||||
Cheesbrough, M. (2002). Biochemical tests to identify bacteria in laboratory practice in tropical countries. Cambridge Edition. Pp. 63-87. | ||||
Clinical and Laboratory Standards Institute (2015). Performance Standards for Antimicrobial Susceptibility Testing. Approved standard M100-S22.Wayne, Pennsylvania, USA: Clinical Laboratory Standards Institute (CLSI). | ||||
Gambo, S., Mohammad, U. K., Baki, A. S., Bello, A., & Gambo, A. (2017). Incidence of Salmonella species isolated from presumptive Typhoid fever patients attending Specialist Hospital Sokoto. Journal of Biological Science, 6(2), 23-27. | ||||
Gambo, S., Yazeed, L., Habibu, A., Aminu, A., Aliyu, I., Asiya, S., Zaidu, Y., Mansur, U., Salim, C., & Shafiu, A. (2024). Plasmid curing of bacteria isolated from upper respiratory tract infections among patients attending Specialist Hospital Sokoto. UMYU Journal of Microbiology Research, 9(3), 395-400. https://doi.org/10.47430/ujmr.2493.047 |
||||
Gilbert, P., & McBain, A. J. (2003). Potential impact of increased use of biocides in consumer products on prevalence of antibiotic resistance. Clinical Microbiology Reviews, 16(2), 189-208. https://doi.org/10.1128/CMR.16.2.189-208.2003 |
||||
Keah, K. C., Jegathesan, M., Tan, S. C., Chan, S. H., Chee, O. M., Cheong, Y. M., & Suleiman, A. B. (1995a). Disinfection: gaps between recommended and actual practice. The Southeast Asian Journal of Tropical Medicine and Public Health, 26(4), 795-798. | ||||
Keah, K. C., Jegathesan, M., Tan, S. C., Chan, S. H., Chee, O. M., Cheong, Y. M., & Suleiman, A. B. (1995b). Bacterial contamination of hospital disinfectants. Medical Journal of Malaysia, 50, 291-297. | ||||
Ogunsola, F. T., Orji, B. O., & Oduyebo, O. O. (2002). Contamination levels of in-use disinfectants in a teaching hospital in Lagos, Nigeria. | ||||
Panigrahi, D., Al‐Aneziz, A. H., & West, P. W. J. (1996). Plasmid‐mediated multidrug resistance in Salmonella typhi in Kuwait. Tropical medicine & international health, 1(4), 439-442. https://doi.org/10.1046/j.1365-3156.1996.d01-80.x |
||||
Patwardhan, R. B., Dhakephalkar, P. K., Chopade, B. A., Dhavale, D. D., & Bhonde, R. R. (2018). Purification and characterization of an active principle, lawsone, responsible for the plasmid curing activity of Plumbago zeylanica root extracts. Frontiers in Microbiology, 9, 2618. https://doi.org/10.3389/fmicb.2018.02618 |
||||
Russell, A. D., Furr, J. R., & Maillard, J. Y. (1997). Microbial susceptibility and resistance to biocides. ASM News-American Society for Microbiology, 63(9), 481-487. | ||||
Shuaibu, A. S., Ibrahim, Y. K. E., Olayinka, B. O., Atata, R. F., Ungo-Kore, H. Y., Olowookere, A., & Shuaibu, A. B. (2016). Antiplasmid effect of acridine orange on multiple antibiotic resistant bacteria isolated from a secondary health care institution in Sokoto State. Journal of Pharmaceutical and Allied Sciences, 13(2), 2399-2406. https://doi.org/10.9734/JAMPS/2017/31291 |
||||
Thayer, D. W., & Murray, J. O. (1977). Physiological, biochemical and morphological characteristics of mesquite wood-digesting bacteria. Microbiology, 101(1), 71-77. https://doi.org/10.1099/00221287-101-1-71 |
||||
Tytler, B. A., Adeyemi, J. O., Adetoran, E. O., & Biyama, H. M. (2006). Microbial contamination of disinfectant solutions in some health care institutions of three towns in Northern Nigeria. Journal of Pharmacy & Bioresources, 3(2), 77-82. https://doi.org/10.4314/jpb.v3i2.32097 |
||||
Weinstein, R. A. (2001). Controlling antimicrobial resistance in hospitals: infection control and use of antibiotics. Emerging Infectious Diseases, 7(2), 188-192. https://doi.org/10.3201/eid0702.010206 |