JOURNAL OF BIOSCIENCE AND BIOTECHNOLOGY DISCOVERY
Integrity Research Journals

ISSN: 2536-7064
Model: Open Access/Peer Reviewed
DOI: 10.31248/JBBD
Start Year: 2016
Email: jbbd@integrityresjournals.org


Comparative evaluation of acaricidal effect of Azadirachta indica crude extract and commercially used synthetic acaricides against Boophilus Annulatus ticks (Acari: Ixodidae)

https://doi.org/10.31248/JBBD2025.223   |   Article Number: D533DFA74   |   Vol.10 (2) - June 2025

Received Date: 17 January 2025   |   Accepted Date: 28 June 2025  |   Published Date: 30 June 2025

Authors:  Hajara Zakari* , Bright Agwara Chiaka , Suleiman Zakari , Mbanu Gloria E and Lemuel Angyunwe Samuel

Keywords: Azadirachta indica, Acaricidal properties, Boophilus annulatus, cattle tick, deltamethrin, lambda-cyhalothrin

Tick infestation remains one of the major health problems that affect the productivity and comfort of cattle. The control of ticks mainly relies on using chemical acaracides. Limited information is available on the potential benefits and activity of various neem extracts on Boophilus annulatus ticks. The present study investigated the acaricidal activity of neem leaf extract at different concentrations against adult Boophilus annulatus ticks in comparison to Deltamethrin and Lambda-cyhalothrin. Adult Boophilus annulatus ticks were challenged with serialized solutions of different concentrations of both plant extract and synthetic chemical using immersion method in a Completely Randomised Design (CRD) and monitored for a period of 24, 48, 72, and 96 hours post treatment. Data were analysed using Log-probit regression and one-way Analysis of Variance (ANOVA). Results revealed dose and Time-dependent mortality and significant variations (P<0.05) among treatment concentrations. Extract of Azadirachta indica was more potent with the highest bioactive range (100%: 6:33±1.64) over the synthetic acaricides (Deltamethrin; 86.70%: 6.00±1.21, Lambda-cyhalothrin; 76.6%: 5.00±1.12). LD50 values for Azadirachta indica, Deltamethrin and Lambda-cyhalothrin are 53.56µl/ml, 22.47µl/ml and 60.0µl/ml, respectively, whereas the LT50 values for Azadirachta indica, Deltamethrin and Lambda-cyhalothrin are 63.66hrs, 76.13hrs and 66.69hrs respectively. In comparison, the acaricidal potential of the three treatments can be arranged in order of Azadirachta indica (100%)>Deltamethrin (86.70%)>Lambda-cyhalothrin (76.6%). All three treatments showed significant difference (p<0.05) and a positive correlation of mortality with treatment concentrations and time of exposure. Qualitative analysis revealed the presence of flavonoids (+), saponins(+), Steroids(+), terpenoids(+) as slightly present, alkaloids(++), phenols(++), glycosides(++) as moderately present while tannins(+++) as highly present. The quantitative analysis revealed the highest percentage of Phytochemical to be phenol (25.5%), saponins (16.8%), alkaloids (11.3%), tannins(10.8%), followed by flavonoids (5.5%), glycosides (4.8%), terpenoids (3.5%), steroids (2.7%) arranged in descending order of percentage presence.   The study revealed a comparable bioefficacy and biopesticidal potential of acetone extract of Azadirachta indica over the synthetic acaricides and can be utilised as an effective tool for the control of Boophilus annulatus ticks in cattle within the study area and globally.

Abbreviations: CRD = Completely Randomised Design, ANOVA = Analysis of Variance, µl/ml = Microlitre/millilitre, LD50 = 50% Lethal dosage, LT50 = 50% Lethal time, LSD = Least significant difference.

Abdel-Ghany, H. S. M., Abdel-Shafy, S., Abuowarda, M. M., El-Khateeb, R. M., Hoballah, E. M., & Fahmy, M. M. (2021). Acaricidal activity of some medicinal plant extracts against different developmental stages of the camel tick hyalomma dromedarii. Adv. Anim. Vet. Sci, 9(5), 722-733.
https://doi.org/10.17582/journal.aavs/2021/9.5.722.733
 
Abdel-Shafy, S. (2018). Is the cattle tick Rhipicephalus annulatus Say, 1821 reared on the rabbit?. Journal of Parasitic Diseases, 42(2), 297-302.
https://doi.org/10.1007/s12639-018-1000-4
 
Abdel-Shafy, S., & Zayed, A. A. (2002). In vitro acaricidal effect of plant extract of neem seed oil (Azadirachta indica) on egg, immature, and adult stages of Hyalomma anatolicum excavatum (Ixodoidea: Ixodidae). Veterinary Parasitology, 106(1), 89-96.
https://doi.org/10.1016/S0304-4017(02)00023-7
 
Aguoru, C. U., Ameh, S. J., & Olasan, O. (2014). Comparative phytochemical studies on the presence and quantification of various bioactive compounds in the three major organs of okoho plant (cissus populnea guill & perr) in benue state north central nigeria, western Africa. European Journal of Advanced Research in Biological and Life Sciences, 2(2), 22-31.
 
Alkazzaz, M. A., Aziz, A. R. A., Elmahalawy, E. K., & Hassan, A. A. (2018). Hematological profile in Schistosoma mansoni infected mice treated with Commiphora molmol extract compared with praziquantel. PSM Biological Research, 3(3), 77-84.
 
Ali-Akbar, M. K, Melvin, A. B., John Philip, L. M. (2013). In vitro acaricidal efficacy of neem (Azadirachta indica) oil against ear mites (Otodectes cynotis). Journal of Agriculture and Technology Management, 19(2), 25, 2599-4875.
 
Anitha Sri, S. (2016). Pharmacological activity of vinca alkaloids. Available from http://www.rroij.com/openaccess/ pharmacological-activity-of-vinca-alkaloids .php?aid=80232
 
Avinash, B., Venu, R., Prasad, T. N., Ray, M. A., Rao, K. S., & Srilatha, C. (2017). Synthetic and characterisation of neem leaf extracts, 2, 3-dihydrosalamol and quercetin dehydrate mediated silver nanoparticles for therapeutic applications. IET Nanobiotechnology, 11(4), 383-389.
https://doi.org/10.1049/iet-nbt.2016.0095
 
Baby, A. R., Freire, T. B., Marques, G. D. A., Rijo, P., Lima, F. V., Carvalho, J. C. M. D., ... & Morocho-Jácome, A. L. (2022). Azadirachta indica (Neem) as a potential natural active for dermocosmetic and topical products: A narrative review. Cosmetics, 9(3), 58.
https://doi.org/10.3390/cosmetics9030058
 
Biu, A. A., Yusufu, S. D., & Rabo, J. S. (2009). Phytochemical screening of Azadirachta indica (neem)(Meliaceae) in Maiduguri, Nigeria. Bioscience Research Communications, 21(6), 281-283.
 
Brites-Neto, J., Duarte, K. M. R., & Martins, T. F. (2015). Tick-borne infections in human and animal population worldwide. Veterinary world, 8(3), 301.
https://doi.org/10.14202/vetworld.2015.301-315
 
Burger, P. A., Ciani, E., & Faye, B. (2019). Old World camels in a modern world-a balancing act between conservation and genetic improvement. Animal Genetics, 50(6), 598-612.
https://doi.org/10.1111/age.12858
 
Chaieb, I. (2010). Saponins as insecticides: a review. Tunisian Journal of Plant Protection, 5(1), 39-50.
 
Chowański, S., Adamski, Z., Marciniak, P., Rosiński, G., Büyükgüzel, E., Büyükgüzel, K., and Bufo, S. A. (2016). A review of bioinsecticidal activity of solanaceae alkaloids. Toxins, 8(3), 60.
https://doi.org/10.3390/toxins8030060
 
De meneghi, D., Stachurski, F. and Adakal H. (2016). Experience in tick control by acaricide in the traditional cattle sector in Zambia and Burkina Faso: Possible environmental and public health implications. Front Public Health, 4, 239.
https://doi.org/10.3389/fpubh.2016.00239
 
Drummond, R. E. A., Ernst, S. E., Trevino, J. L., Gladney, W. J., & Graham, O. H. (1973). Boophilus annulatus and B. microplus: laboratory tests of insecticides. Journal of Economic Entomology, 66(1), 130-133.
https://doi.org/10.1093/jee/66.1.130
 
Drummond, R. O. (1983). Tick borne livestock disease and their vectors, chemical control of ticks. Wild Animal Reserve (FAO), 36, 28-33.
 
El-Gohary, F. A., Shokier, K. A., & Elbably, M. A. (2016). Prevalence and risk determinants of ixodid tick infestation of cattle in Beni-suef governorate, Egypt. Annals of Veterinary and Animal Science, 42-55.
 
Elmahallawy, E. K., Elshopakey, G. E., Saleh, A. A., Agil, A., El-morsey, A., El-shewey D. M. M. (2014). S. Methylcysteine (SMC) ameliorates intestinal, hepatic and splenic damage induced by cryptosporidium parvum infection via targeting inflammatory modulators and oxidative stress in swiss albino mice. Biomedicines, 8, 423.
https://doi.org/10.3390/biomedicines8100423
 
Elmahallawy, E. K., Elshopakey, G. E., Saleh, A. A., Agil, A., El-Morsey, A., El-Shewehy, D. M., ... & Abdo, W. (2020). S-Methylcysteine (SMC) ameliorates intestinal, hepatic, and splenic damage induced by Cryptosporidium parvum infection via targeting inflammatory modulators and oxidative stress in swiss albino mice. Biomedicines, 8(10), 423.
https://doi.org/10.3390/biomedicines8100423
 
Elmahallawy, E. K., Mohamed, Y., Abdo, W., El-Gohary, F. A., Ahmed Awad Ali, S., & Yanai, T. (2021). New insights into potential benefits of bioactive compounds of bee products on COVID-19: a review and assessment of recent research. Frontiers in Molecular Biosciences, 7, 618318.
https://doi.org/10.3389/fmolb.2020.618318
 
Essa, A. M., Kotb, S. A., Hussein, M. K., Dyab, A. K., & Abdelazeem, A. G. (2022). Epidemiological and morphological studies on Hyalomma Species infesting dromedary camels In Aswan governorate, Egypt. Journal of the Egyptian Society of Parasitology, 52(1), 123-132.
https://doi.org/10.21608/jesp.2022.235828
 
El Tigani, M. A., & Mohammed, A. (2010). Ticks (Acari: Ixodidae) infesting camels in El Butana area mid-central sudan. Sudan Journal of Veterinary Research, 25, 51-54.
 
Finney, D. J. (1971). Probit analysis. Cambridge University Press, Cambridge. p. 333.
 
Foerster, H. (2006). MetaCyc Pathway: Saponin Biosynthesis. Retrieved from http://vm-trypanocyc.toulouse.inra. fr/META/NEW-IMAGE?type=PATHWAY&object=PWY-5203
 
Gahukar, R. T. (2014). Factors affecting content and bioefficacy of neem (Azadirachta indica A. Juss.) phytochemicals used in agricultural pest control: a review. Crop Protection, 62, 93-99.
https://doi.org/10.1016/j.cropro.2014.04.014
 
Gareh, A., Hassan, D., Essa, A., Kotb, S., Karmi, M., Mohamed, A. E. H., Alkhaibari, A. M., Elbaz, E., Elhawary, N. M., Hassanen, E. A. A., Lokman, M. S., El-Gohary, F. A., & Elmahallawy E. K. (2022). Acaricidal properties of four neem seed extracts (Azadirachta indica) on the camel tick Hyalomma dromedarii (Acari: Ixodidae). Frontiers in Veterinary Science, 22(9), 946702.
https://doi.org/10.3389/fvets.2022.946702
 
Ghosh, S., Tiwari, S. S., Srivastava, S., Sharma, A. K., Kumar, S., Ray, D. D., & Rawat, A. K. S. (2013). Acaricidal properties of Ricinus communis leaf extracts against organophosphate and pyrethroids resistant Rhipicephalus (Boophilus) microplus. Veterinary Parasitology, 192(1-3), 259-267.
https://doi.org/10.1016/j.vetpar.2012.09.031
 
Giglioti, R., Forim, M. R., Oliveira, H. N. D., Chagas, A. D. S., Ferrezini, J., Brito, L. G., Falcoski, T. O. R. S., Albuquerque, L. G. D., & Oliveira, M. D. S. (2011). In vitro acaricidal activity of neem (Azadirachta indica) seed extracts with known azadirachtin concentrations against Rhipicephalus microplus. Veterinary Parasitology, 181(2-4), 309-315.
https://doi.org/10.1016/j.vetpar.2011.03.053
 
Havsteen, B. H. (2002). The biochemistry and medical significance of the flavonoids. Pharmacology and Therapeutics, 96(2), 67-202.
https://doi.org/10.1016/S0163-7258(02)00298-X
 
Hoogstraal, H. (1956). African Ixodoidea. Volume I. Ticks of the Sudan. US Nav. Med. Res. I, 1101.
https://doi.org/10.5962/bhl.title.6870
 
Hurtado, O. J. B., & Giraldo-Ríos, C. (2018). Economic and health impact of the ticks in production animals. In Ticks and tick-borne pathogens. IntechOpen.
 
Khanal, S. (2021). Qualitative and quantitative phytochemical screening of Azadirachta indica Juss. plant parts. International Journal of Applied Sciences and Biotechnology, 9(2), 122-127.
https://doi.org/10.3126/ijasbt.v9i2.38050
 
Kilani-Morakchi, S., Morakchi-Goudjil, H., & Sifi, K. (2021). Azadirachtin-based insecticide: Overview, risk assessments, and future directions. Frontiers in Agronomy, 3, 676208.
https://doi.org/10.3389/fagro.2021.676208
 
Liener, I. E. (1980). Toxic constituents of plant foodstuffs: The Proceedings of the Nutrition Society. New York City: Academic Press. vol. 29, pp. 56-57.
https://doi.org/10.1079/PNS19700010
 
Macchioni, F., Perrucci, S., Cecchi, F., Cioni, P. L., Morelli, I., & Pampiglione, S. (2004). Acaricidal activity of aqueous extracts of camomile flowers, Matricaria chamomilla, against the mite Psoroptes cuniculi. Medical and Veterinary Entomology, 18(2), 205-207.
https://doi.org/10.1111/j.0269-283X.2004.00488.x
 
Mohammed A. Z. (2011). Ethnobotanical survey of traditional medicinal plants in Tehuledere district, south wollo, Ethiopia. Journal of medicinal plant research, 5(26), 6233-6242.
https://doi.org/10.5897/JMPR11.1070
 
Nejash, A. (2016). Review of important cattle tick and its control in Ethiopia. Open Access Library Journal, 3, 1-11.
https://doi.org/10.4236/oalib.1102456
 
Nugraha, R. V., Ridwansyah, H., Ghozali, M., Khairani, A. F., & Atik, N. (2020). Traditional herbal medicine candidates as complementary treatments for COVID‐19: A review of their mechanisms, pros and cons. Evidence‐Based Complementary and Alternative Medicine, 2020(1), 2560645.
https://doi.org/10.1155/2020/2560645
 
Nwali, O. N., Idoko, A., Okolie, J. E., Ezeh, E., Ugwudike, P. O., Rita, O. N., Ezenwali, M. O., Odo, I. A., Ani, P. N., & Okolie, S. O. (2018). Comparative analysis of the phytochemical compositions of leaf, stem-bark and root of Azadirachta Indica (neem). Universal Journal of Pharmaceutical Research, 3(5).
 
Parte, S. G., Patil, R. D., Patil, M. A., Patel, N. S., & Chavan, J. A. (2014). Utilization of herbals for the managements of cattle ticks. International Journal of Current Microbiology and Applied Science, 3(10), 228-232.
 
Raizada, R. B., Srivastava, M. K., Kaushal, R. A., & Singh, R. P. (2001). Azadirachtin, a neem biopesticide: subchronic toxicity assessment in rats. Food and chemical toxicology, 39(5), 477-483.
https://doi.org/10.1016/S0278-6915(00)00153-8
 
Ramez, A. M., Elmahallawy, E. K., Elshopakey, G. E., Saleh, A. A., Moustafa, S. M., Al-Brakati, A., Abdo, W., & El-Shewehy, D. M. (2021). Hepatosplenic protective actions of Spirulina platensis and matcha green tea against Schistosoma mansoni infection in mice via antioxidative and anti-inflammatory mechanisms. Frontiers in Veterinary Science, 8, 650531.
https://doi.org/10.3389/fvets.2021.650531
 
Rajput, Z. I., Hu, S. H., Chen, W. J., Arijo, A. G., & Xiao, C. W. (2006). Importance of ticks and their chemical and immunological control in livestock. Journal of Zhejiang University Science B, 7(11), 912-921.
https://doi.org/10.1631/jzus.2006.B0912
 
Rattan, R. S. (2020). Mechanism of action of insecticidal secondary metabolites of Plant origin. Crop Protection, 29, 913-20.
https://doi.org/10.1016/j.cropro.2010.05.008
 
Ribeiro, V. L. S., dos Santos, J. C., Martins, J. R., Schripsema, J., Siqueira, I. R., von Poser, G. L., & Apel, M. A. (2011). Acaricidal properties of the essential oil and precocene II obtained from Calea serrata (Asteraceae) on the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Veterinary Parasitology, 179(1-3), 195-198.
https://doi.org/10.1016/j.vetpar.2011.02.006
 
Senguttuvan, J., Paulsamy, S., & Karthika, K. (2014). Phytochemical analysis and evaluation of leaf and root parts of the medicinal herb, Hypochaerisradicata L. for in vitro antioxidant activities. Asian Pacific Journal of Tropical Biomedicine, 4(Suppl 1), S359-S367.
https://doi.org/10.12980/APJTB.4.2014C1030
 
Seriana, I., Akmal, M., Darusman, D., Wahyuni, S., Khairan, K., & Sugito, S. (2021). Neem leaf (Azadirachta indica A. Juss) ethanolic extract on the liver and kidney function of rats. The Scientific World Journal, 2021(1), 7970424.
https://doi.org/10.1155/2021/7970424
 
Zaman, M. A., Zafar Iqbal, Z. I., Sindhu, Z. U. D., Abbas, R. Z., & Qamar, M. F. (2017). An overview of plants with acaricidal and anthelmintic properties. International Journal of Agriculture and Biology, 19(5), 957-968.
https://doi.org/10.17957/IJAB/15.0289
 
Subrahmanyam, B., Müller, T., & Rembold, H. (1989). Inhibition of turnover of neurosecretion by azadirachtin in Locustamigratoria. Journal of Insect Physiology, 35(6), 493-500.
https://doi.org/10.1016/0022-1910(89)90056-5
 
Tahmasbi, S. F., Revell, M. A., & Tahmasebi, N. (2020). Herbal medication to enhance or modulate viral infections. The Nursing Clinics of North America, 56(1), 79.
https://doi.org/10.1016/j.cnur.2020.10.007
 
Torres, J., Olivares, S., De la Rosa, D., Lima, I., Martinez, F., Munita, C. S., & Favaro, D. T. (1999). Removal of mercury (II) and methyl mercury for solution by tannin adsorbents. Journal of Radioanalytical and Nuclear Chemistry, 240(1), 361-365.
https://doi.org/10.1007/BF02349180
 
Walker, A. R. (2003). Ticks of domestic animals in Africa: A guide to identification of species. Edinburgh: Bioscience Reports.
 
Wink, M. (2000). Interference of alkaloids with neuroreceptors and ion channels. In Atta-urRahman (Ed.), Studies in Natural Products Chemistry (Vol. 21, pp. 3-122). Elsevier.
https://doi.org/10.1016/S1572-5995(00)80004-6
 
Wink, M., Schmeller, T., & Latz-Brüning, B. (1998). Modes of Action of Allelochemical Alkaloids: Interaction with Neuroreceptors, DNA, and Other Molecular Targets. Journal of Chemical Ecology, 24(11), 1881-1937.
https://doi.org/10.1023/A:1022315802264
 
Zheoat, A. M., Alenezi, S., Elmahallawy, E. K., Ungogo, M. A., Alghamdi, A. H., Watson, D. G., Igoli, J. O., Gray, A.I., de Koning, H. P., & Ferro, V. A. (2021). Antitrypanosomal and antileishmanial activity of chalcones and flavanones from Polygonum salicifolium. Pathogens, 10(2), 175.
https://doi.org/10.3390/pathogens10020175