ISSN: 2536-7064
Model: Open Access/Peer Reviewed
DOI: 10.31248/JBBD
Start Year: 2016
Email: jbbd@integrityresjournals.org
https://doi.org/10.31248/JBBD2025.223 | Article Number: D533DFA74 | Vol.10 (2) - June 2025
Received Date: 17 January 2025 | Accepted Date: 28 June 2025 | Published Date: 30 June 2025
Authors: Hajara Zakari* , Bright Agwara Chiaka , Suleiman Zakari , Mbanu Gloria E and Lemuel Angyunwe Samuel
Keywords: Azadirachta indica, Acaricidal properties, Boophilus annulatus, cattle tick, deltamethrin, lambda-cyhalothrin
Tick infestation remains one of the major health problems that affect the productivity and comfort of cattle. The control of ticks mainly relies on using chemical acaracides. Limited information is available on the potential benefits and activity of various neem extracts on Boophilus annulatus ticks. The present study investigated the acaricidal activity of neem leaf extract at different concentrations against adult Boophilus annulatus ticks in comparison to Deltamethrin and Lambda-cyhalothrin. Adult Boophilus annulatus ticks were challenged with serialized solutions of different concentrations of both plant extract and synthetic chemical using immersion method in a Completely Randomised Design (CRD) and monitored for a period of 24, 48, 72, and 96 hours post treatment. Data were analysed using Log-probit regression and one-way Analysis of Variance (ANOVA). Results revealed dose and Time-dependent mortality and significant variations (P<0.05) among treatment concentrations. Extract of Azadirachta indica was more potent with the highest bioactive range (100%: 6:33±1.64) over the synthetic acaricides (Deltamethrin; 86.70%: 6.00±1.21, Lambda-cyhalothrin; 76.6%: 5.00±1.12). LD50 values for Azadirachta indica, Deltamethrin and Lambda-cyhalothrin are 53.56µl/ml, 22.47µl/ml and 60.0µl/ml, respectively, whereas the LT50 values for Azadirachta indica, Deltamethrin and Lambda-cyhalothrin are 63.66hrs, 76.13hrs and 66.69hrs respectively. In comparison, the acaricidal potential of the three treatments can be arranged in order of Azadirachta indica (100%)>Deltamethrin (86.70%)>Lambda-cyhalothrin (76.6%). All three treatments showed significant difference (p<0.05) and a positive correlation of mortality with treatment concentrations and time of exposure. Qualitative analysis revealed the presence of flavonoids (+), saponins(+), Steroids(+), terpenoids(+) as slightly present, alkaloids(++), phenols(++), glycosides(++) as moderately present while tannins(+++) as highly present. The quantitative analysis revealed the highest percentage of Phytochemical to be phenol (25.5%), saponins (16.8%), alkaloids (11.3%), tannins(10.8%), followed by flavonoids (5.5%), glycosides (4.8%), terpenoids (3.5%), steroids (2.7%) arranged in descending order of percentage presence. The study revealed a comparable bioefficacy and biopesticidal potential of acetone extract of Azadirachta indica over the synthetic acaricides and can be utilised as an effective tool for the control of Boophilus annulatus ticks in cattle within the study area and globally.
Abbreviations: CRD = Completely Randomised Design, ANOVA = Analysis of Variance, µl/ml = Microlitre/millilitre, LD50 = 50% Lethal dosage, LT50 = 50% Lethal time, LSD = Least significant difference.
Abdel-Ghany, H. S. M., Abdel-Shafy, S., Abuowarda, M. M., El-Khateeb, R. M., Hoballah, E. M., & Fahmy, M. M. (2021). Acaricidal activity of some medicinal plant extracts against different developmental stages of the camel tick hyalomma dromedarii. Adv. Anim. Vet. Sci, 9(5), 722-733. https://doi.org/10.17582/journal.aavs/2021/9.5.722.733 |
||||
Abdel-Shafy, S. (2018). Is the cattle tick Rhipicephalus annulatus Say, 1821 reared on the rabbit?. Journal of Parasitic Diseases, 42(2), 297-302. https://doi.org/10.1007/s12639-018-1000-4 |
||||
Abdel-Shafy, S., & Zayed, A. A. (2002). In vitro acaricidal effect of plant extract of neem seed oil (Azadirachta indica) on egg, immature, and adult stages of Hyalomma anatolicum excavatum (Ixodoidea: Ixodidae). Veterinary Parasitology, 106(1), 89-96. https://doi.org/10.1016/S0304-4017(02)00023-7 |
||||
Aguoru, C. U., Ameh, S. J., & Olasan, O. (2014). Comparative phytochemical studies on the presence and quantification of various bioactive compounds in the three major organs of okoho plant (cissus populnea guill & perr) in benue state north central nigeria, western Africa. European Journal of Advanced Research in Biological and Life Sciences, 2(2), 22-31. | ||||
Alkazzaz, M. A., Aziz, A. R. A., Elmahalawy, E. K., & Hassan, A. A. (2018). Hematological profile in Schistosoma mansoni infected mice treated with Commiphora molmol extract compared with praziquantel. PSM Biological Research, 3(3), 77-84. | ||||
Ali-Akbar, M. K, Melvin, A. B., John Philip, L. M. (2013). In vitro acaricidal efficacy of neem (Azadirachta indica) oil against ear mites (Otodectes cynotis). Journal of Agriculture and Technology Management, 19(2), 25, 2599-4875. | ||||
Anitha Sri, S. (2016). Pharmacological activity of vinca alkaloids. Available from http://www.rroij.com/openaccess/ pharmacological-activity-of-vinca-alkaloids .php?aid=80232 | ||||
Avinash, B., Venu, R., Prasad, T. N., Ray, M. A., Rao, K. S., & Srilatha, C. (2017). Synthetic and characterisation of neem leaf extracts, 2, 3-dihydrosalamol and quercetin dehydrate mediated silver nanoparticles for therapeutic applications. IET Nanobiotechnology, 11(4), 383-389. https://doi.org/10.1049/iet-nbt.2016.0095 |
||||
Baby, A. R., Freire, T. B., Marques, G. D. A., Rijo, P., Lima, F. V., Carvalho, J. C. M. D., ... & Morocho-Jácome, A. L. (2022). Azadirachta indica (Neem) as a potential natural active for dermocosmetic and topical products: A narrative review. Cosmetics, 9(3), 58. https://doi.org/10.3390/cosmetics9030058 |
||||
Biu, A. A., Yusufu, S. D., & Rabo, J. S. (2009). Phytochemical screening of Azadirachta indica (neem)(Meliaceae) in Maiduguri, Nigeria. Bioscience Research Communications, 21(6), 281-283. | ||||
Brites-Neto, J., Duarte, K. M. R., & Martins, T. F. (2015). Tick-borne infections in human and animal population worldwide. Veterinary world, 8(3), 301. https://doi.org/10.14202/vetworld.2015.301-315 |
||||
Burger, P. A., Ciani, E., & Faye, B. (2019). Old World camels in a modern world-a balancing act between conservation and genetic improvement. Animal Genetics, 50(6), 598-612. https://doi.org/10.1111/age.12858 |
||||
Chaieb, I. (2010). Saponins as insecticides: a review. Tunisian Journal of Plant Protection, 5(1), 39-50. | ||||
Chowański, S., Adamski, Z., Marciniak, P., Rosiński, G., Büyükgüzel, E., Büyükgüzel, K., and Bufo, S. A. (2016). A review of bioinsecticidal activity of solanaceae alkaloids. Toxins, 8(3), 60. https://doi.org/10.3390/toxins8030060 |
||||
De meneghi, D., Stachurski, F. and Adakal H. (2016). Experience in tick control by acaricide in the traditional cattle sector in Zambia and Burkina Faso: Possible environmental and public health implications. Front Public Health, 4, 239. https://doi.org/10.3389/fpubh.2016.00239 |
||||
Drummond, R. E. A., Ernst, S. E., Trevino, J. L., Gladney, W. J., & Graham, O. H. (1973). Boophilus annulatus and B. microplus: laboratory tests of insecticides. Journal of Economic Entomology, 66(1), 130-133. https://doi.org/10.1093/jee/66.1.130 |
||||
Drummond, R. O. (1983). Tick borne livestock disease and their vectors, chemical control of ticks. Wild Animal Reserve (FAO), 36, 28-33. | ||||
El-Gohary, F. A., Shokier, K. A., & Elbably, M. A. (2016). Prevalence and risk determinants of ixodid tick infestation of cattle in Beni-suef governorate, Egypt. Annals of Veterinary and Animal Science, 42-55. | ||||
Elmahallawy, E. K., Elshopakey, G. E., Saleh, A. A., Agil, A., El-morsey, A., El-shewey D. M. M. (2014). S. Methylcysteine (SMC) ameliorates intestinal, hepatic and splenic damage induced by cryptosporidium parvum infection via targeting inflammatory modulators and oxidative stress in swiss albino mice. Biomedicines, 8, 423. https://doi.org/10.3390/biomedicines8100423 |
||||
Elmahallawy, E. K., Elshopakey, G. E., Saleh, A. A., Agil, A., El-Morsey, A., El-Shewehy, D. M., ... & Abdo, W. (2020). S-Methylcysteine (SMC) ameliorates intestinal, hepatic, and splenic damage induced by Cryptosporidium parvum infection via targeting inflammatory modulators and oxidative stress in swiss albino mice. Biomedicines, 8(10), 423. https://doi.org/10.3390/biomedicines8100423 |
||||
Elmahallawy, E. K., Mohamed, Y., Abdo, W., El-Gohary, F. A., Ahmed Awad Ali, S., & Yanai, T. (2021). New insights into potential benefits of bioactive compounds of bee products on COVID-19: a review and assessment of recent research. Frontiers in Molecular Biosciences, 7, 618318. https://doi.org/10.3389/fmolb.2020.618318 |
||||
Essa, A. M., Kotb, S. A., Hussein, M. K., Dyab, A. K., & Abdelazeem, A. G. (2022). Epidemiological and morphological studies on Hyalomma Species infesting dromedary camels In Aswan governorate, Egypt. Journal of the Egyptian Society of Parasitology, 52(1), 123-132. https://doi.org/10.21608/jesp.2022.235828 |
||||
El Tigani, M. A., & Mohammed, A. (2010). Ticks (Acari: Ixodidae) infesting camels in El Butana area mid-central sudan. Sudan Journal of Veterinary Research, 25, 51-54. | ||||
Finney, D. J. (1971). Probit analysis. Cambridge University Press, Cambridge. p. 333. | ||||
Foerster, H. (2006). MetaCyc Pathway: Saponin Biosynthesis. Retrieved from http://vm-trypanocyc.toulouse.inra. fr/META/NEW-IMAGE?type=PATHWAY&object=PWY-5203 | ||||
Gahukar, R. T. (2014). Factors affecting content and bioefficacy of neem (Azadirachta indica A. Juss.) phytochemicals used in agricultural pest control: a review. Crop Protection, 62, 93-99. https://doi.org/10.1016/j.cropro.2014.04.014 |
||||
Gareh, A., Hassan, D., Essa, A., Kotb, S., Karmi, M., Mohamed, A. E. H., Alkhaibari, A. M., Elbaz, E., Elhawary, N. M., Hassanen, E. A. A., Lokman, M. S., El-Gohary, F. A., & Elmahallawy E. K. (2022). Acaricidal properties of four neem seed extracts (Azadirachta indica) on the camel tick Hyalomma dromedarii (Acari: Ixodidae). Frontiers in Veterinary Science, 22(9), 946702. https://doi.org/10.3389/fvets.2022.946702 |
||||
Ghosh, S., Tiwari, S. S., Srivastava, S., Sharma, A. K., Kumar, S., Ray, D. D., & Rawat, A. K. S. (2013). Acaricidal properties of Ricinus communis leaf extracts against organophosphate and pyrethroids resistant Rhipicephalus (Boophilus) microplus. Veterinary Parasitology, 192(1-3), 259-267. https://doi.org/10.1016/j.vetpar.2012.09.031 |
||||
Giglioti, R., Forim, M. R., Oliveira, H. N. D., Chagas, A. D. S., Ferrezini, J., Brito, L. G., Falcoski, T. O. R. S., Albuquerque, L. G. D., & Oliveira, M. D. S. (2011). In vitro acaricidal activity of neem (Azadirachta indica) seed extracts with known azadirachtin concentrations against Rhipicephalus microplus. Veterinary Parasitology, 181(2-4), 309-315. https://doi.org/10.1016/j.vetpar.2011.03.053 |
||||
Havsteen, B. H. (2002). The biochemistry and medical significance of the flavonoids. Pharmacology and Therapeutics, 96(2), 67-202. https://doi.org/10.1016/S0163-7258(02)00298-X |
||||
Hoogstraal, H. (1956). African Ixodoidea. Volume I. Ticks of the Sudan. US Nav. Med. Res. I, 1101. https://doi.org/10.5962/bhl.title.6870 |
||||
Hurtado, O. J. B., & Giraldo-Ríos, C. (2018). Economic and health impact of the ticks in production animals. In Ticks and tick-borne pathogens. IntechOpen. | ||||
Khanal, S. (2021). Qualitative and quantitative phytochemical screening of Azadirachta indica Juss. plant parts. International Journal of Applied Sciences and Biotechnology, 9(2), 122-127. https://doi.org/10.3126/ijasbt.v9i2.38050 |
||||
Kilani-Morakchi, S., Morakchi-Goudjil, H., & Sifi, K. (2021). Azadirachtin-based insecticide: Overview, risk assessments, and future directions. Frontiers in Agronomy, 3, 676208. https://doi.org/10.3389/fagro.2021.676208 |
||||
Liener, I. E. (1980). Toxic constituents of plant foodstuffs: The Proceedings of the Nutrition Society. New York City: Academic Press. vol. 29, pp. 56-57. https://doi.org/10.1079/PNS19700010 |
||||
Macchioni, F., Perrucci, S., Cecchi, F., Cioni, P. L., Morelli, I., & Pampiglione, S. (2004). Acaricidal activity of aqueous extracts of camomile flowers, Matricaria chamomilla, against the mite Psoroptes cuniculi. Medical and Veterinary Entomology, 18(2), 205-207. https://doi.org/10.1111/j.0269-283X.2004.00488.x |
||||
Mohammed A. Z. (2011). Ethnobotanical survey of traditional medicinal plants in Tehuledere district, south wollo, Ethiopia. Journal of medicinal plant research, 5(26), 6233-6242. https://doi.org/10.5897/JMPR11.1070 |
||||
Nejash, A. (2016). Review of important cattle tick and its control in Ethiopia. Open Access Library Journal, 3, 1-11. https://doi.org/10.4236/oalib.1102456 |
||||
Nugraha, R. V., Ridwansyah, H., Ghozali, M., Khairani, A. F., & Atik, N. (2020). Traditional herbal medicine candidates as complementary treatments for COVID‐19: A review of their mechanisms, pros and cons. Evidence‐Based Complementary and Alternative Medicine, 2020(1), 2560645. https://doi.org/10.1155/2020/2560645 |
||||
Nwali, O. N., Idoko, A., Okolie, J. E., Ezeh, E., Ugwudike, P. O., Rita, O. N., Ezenwali, M. O., Odo, I. A., Ani, P. N., & Okolie, S. O. (2018). Comparative analysis of the phytochemical compositions of leaf, stem-bark and root of Azadirachta Indica (neem). Universal Journal of Pharmaceutical Research, 3(5). | ||||
Parte, S. G., Patil, R. D., Patil, M. A., Patel, N. S., & Chavan, J. A. (2014). Utilization of herbals for the managements of cattle ticks. International Journal of Current Microbiology and Applied Science, 3(10), 228-232. | ||||
Raizada, R. B., Srivastava, M. K., Kaushal, R. A., & Singh, R. P. (2001). Azadirachtin, a neem biopesticide: subchronic toxicity assessment in rats. Food and chemical toxicology, 39(5), 477-483. https://doi.org/10.1016/S0278-6915(00)00153-8 |
||||
Ramez, A. M., Elmahallawy, E. K., Elshopakey, G. E., Saleh, A. A., Moustafa, S. M., Al-Brakati, A., Abdo, W., & El-Shewehy, D. M. (2021). Hepatosplenic protective actions of Spirulina platensis and matcha green tea against Schistosoma mansoni infection in mice via antioxidative and anti-inflammatory mechanisms. Frontiers in Veterinary Science, 8, 650531. https://doi.org/10.3389/fvets.2021.650531 |
||||
Rajput, Z. I., Hu, S. H., Chen, W. J., Arijo, A. G., & Xiao, C. W. (2006). Importance of ticks and their chemical and immunological control in livestock. Journal of Zhejiang University Science B, 7(11), 912-921. https://doi.org/10.1631/jzus.2006.B0912 |
||||
Rattan, R. S. (2020). Mechanism of action of insecticidal secondary metabolites of Plant origin. Crop Protection, 29, 913-20. https://doi.org/10.1016/j.cropro.2010.05.008 |
||||
Ribeiro, V. L. S., dos Santos, J. C., Martins, J. R., Schripsema, J., Siqueira, I. R., von Poser, G. L., & Apel, M. A. (2011). Acaricidal properties of the essential oil and precocene II obtained from Calea serrata (Asteraceae) on the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Veterinary Parasitology, 179(1-3), 195-198. https://doi.org/10.1016/j.vetpar.2011.02.006 |
||||
Senguttuvan, J., Paulsamy, S., & Karthika, K. (2014). Phytochemical analysis and evaluation of leaf and root parts of the medicinal herb, Hypochaerisradicata L. for in vitro antioxidant activities. Asian Pacific Journal of Tropical Biomedicine, 4(Suppl 1), S359-S367. https://doi.org/10.12980/APJTB.4.2014C1030 |
||||
Seriana, I., Akmal, M., Darusman, D., Wahyuni, S., Khairan, K., & Sugito, S. (2021). Neem leaf (Azadirachta indica A. Juss) ethanolic extract on the liver and kidney function of rats. The Scientific World Journal, 2021(1), 7970424. https://doi.org/10.1155/2021/7970424 |
||||
Zaman, M. A., Zafar Iqbal, Z. I., Sindhu, Z. U. D., Abbas, R. Z., & Qamar, M. F. (2017). An overview of plants with acaricidal and anthelmintic properties. International Journal of Agriculture and Biology, 19(5), 957-968. https://doi.org/10.17957/IJAB/15.0289 |
||||
Subrahmanyam, B., Müller, T., & Rembold, H. (1989). Inhibition of turnover of neurosecretion by azadirachtin in Locustamigratoria. Journal of Insect Physiology, 35(6), 493-500. https://doi.org/10.1016/0022-1910(89)90056-5 |
||||
Tahmasbi, S. F., Revell, M. A., & Tahmasebi, N. (2020). Herbal medication to enhance or modulate viral infections. The Nursing Clinics of North America, 56(1), 79. https://doi.org/10.1016/j.cnur.2020.10.007 |
||||
Torres, J., Olivares, S., De la Rosa, D., Lima, I., Martinez, F., Munita, C. S., & Favaro, D. T. (1999). Removal of mercury (II) and methyl mercury for solution by tannin adsorbents. Journal of Radioanalytical and Nuclear Chemistry, 240(1), 361-365. https://doi.org/10.1007/BF02349180 |
||||
Walker, A. R. (2003). Ticks of domestic animals in Africa: A guide to identification of species. Edinburgh: Bioscience Reports. | ||||
Wink, M. (2000). Interference of alkaloids with neuroreceptors and ion channels. In Atta-urRahman (Ed.), Studies in Natural Products Chemistry (Vol. 21, pp. 3-122). Elsevier. https://doi.org/10.1016/S1572-5995(00)80004-6 |
||||
Wink, M., Schmeller, T., & Latz-Brüning, B. (1998). Modes of Action of Allelochemical Alkaloids: Interaction with Neuroreceptors, DNA, and Other Molecular Targets. Journal of Chemical Ecology, 24(11), 1881-1937. https://doi.org/10.1023/A:1022315802264 |
||||
Zheoat, A. M., Alenezi, S., Elmahallawy, E. K., Ungogo, M. A., Alghamdi, A. H., Watson, D. G., Igoli, J. O., Gray, A.I., de Koning, H. P., & Ferro, V. A. (2021). Antitrypanosomal and antileishmanial activity of chalcones and flavanones from Polygonum salicifolium. Pathogens, 10(2), 175. https://doi.org/10.3390/pathogens10020175 |