ISSN: 2536-7064
Model: Open Access/Peer Reviewed
DOI: 10.31248/JBBD
Start Year: 2016
Email: jbbd@integrityresjournals.org
https://doi.org/10.31248/JBBD2023.180 | Article Number: C83233BD4 | Vol.8 (2) - April 2023
Received Date: 07 March 2023 | Accepted Date: 23 April 2023 | Published Date: 30 April 2023
Authors: Ajiboye, A. E.* , Aliyu, M. and Adedayo, M. R.
Keywords: solid-state fermentation., Aspergillus flavus, Aspergillus niger, itaconic acid, sweet potato peels.
This study evaluates the potentials of sweet potato peel as a substrate for itaconic acid production in solid state fermentation using naturally occurring fungi. Sweet potato peel was analyzed for proximate composition using standard methods. Fungi were obtained from the peel by solid state fermentation and identified using microscopic and molecular methods. Fermentation for itaconic acid production was done using isolated fungus and Aspergillus niger (ATCC 16888) was used as control. Optimization of fermentation parameters was carried out using standard procedures. Assay for itaconic acid and total titratable acidity (TTA) were analyzed using standard methods. Reducing sugar was obtained using DNSA method. Proximate composition of the peel reveals carbohydrate content to be 79%, protein, 5% and ash, 4%. Fungus isolated was identified as Aspergillus flavus L-2482/2012. Highest itaconic acid production by A. flavus was 7.74±0.00 mg/ml on day 5 at 30 g substrate concentration. Using 2 ml of 1 x 107 spores/ml, A. flavus and A. niger produced 6.97±0.13 and 6.67±0.09 mg/ml respectively. Optimum temperature for itaconic acid production was 30°C for A. niger and A. flavus. TTA ranged between 0.04±0.00 to 0.21±0.01 and 0.05±0.00 to 0.26±0.00 mg/ml for A. niger and A. flavus respectively. The highest reducing sugar, 0.51±0.00 mg/ml was obtained at substrate concentration 40 mg/ml on day 5 by A. flavus while A. niger had reducing sugar value of 0.37±0.00 mg/ml. In conclusion, A. flavus L-2482/2012. has great potentials for itaconic acid production using sweet potato peel in solid state fermentation under optimized conditions.
Ahmed El-Imam, A. M, Kazeem, M. O., Odebisi, M. B., & Abidoye, A. O. (2013). Production of itaconic acid from Jatropha curcas seed cake by Aspergillus terreus. Notulae Scientia Biologicae, 5(1), 57-61. https://doi.org/10.15835/nsb518355 |
||||
Ahmed, A. S., Farag, S. S., Hassan, I. A., & Botros, H. W. (2015). Production of gluconic acid by using some irradiated microorganisms. Journal of Radiation Research and Applied Sciences, 8(3), 374-380. https://doi.org/10.1016/j.jrras.2015.02.006 |
||||
Ajiboye, A. E., Adedayo, M. R., Babatunde, S. K., Odaibo, D. A., Ajuwon, I. B., & Ekanem, H. I. (2018). Itaconic acid production from Date palm (Phoenix Dactylifera L) using fungi in solid state fermentation. Covenant Journal of Physical and Life Sciences, 6(1), 20-35. | ||||
AOAC (2019). Official Methods of Analysis (20th Edition). Association of Official Analytical Chemists, Washington, DC., USA. | ||||
Bafana, R., & Pandey, R. A. (2018). New approaches for itaconic acid production: Bottlenecks and possible remedies. Critical Reviews in Biotechnology, 38(1), 68-82. https://doi.org/10.1080/07388551.2017.1312268 |
||||
Barnett, H. L., & Hunter, B. B. (1972). Illustrated Genera of Imperfect Fungi. Burgess Publishing Company, Minneapolis. Pp: 62-63. | ||||
Bhargav, S., Panda, B. P., Ali, M., & Javed, S. (2008). Solid-state fermentation: an overview. Chemical and Biochemical Engineering Quarterly, 22(1), 49-70. | ||||
Coffman, M. A. (2011). Carbohydrates in potato starch. Life Strong Foundation, 16:1-3. | ||||
Fawole, M. Q., & Oso, B. A. (2004). Laboratory manual of microbiology. Spectrum Books, Limited, Ibadan. | ||||
Friedkin, M. (1945). Determination of itaconic acid in fermentation liquors. Industrial & Engineering Chemistry Analytical Edition, 17(10), 637-638. https://doi.org/10.1021/i560146a009 |
||||
Gilman, J. C. (2001). A manual of soil fungi. Oxford & IBH Publishing Corporation, New Delhi, India. | ||||
Global Market Insights, (2016). Itaconic acid market. Retrieved 26th May 2021 from https://www.gminsights.com/industry-analysis/itaconic-acid-market. | ||||
Gnanasekaran, R., Dhandapani, B., Gopinath, K. P., & Iyyappan, J. (2018). Synthesis of itaconic acid from agricultural waste using novel Aspergillus niveus. Preparative Biochemistry and Biotechnology, 48(7), 605-609. https://doi.org/10.1080/10826068.2018.1476884 |
||||
Grigoryev, Y. (2013). Cell counting with a hemocytometer: Easy as 1,2,3. Retrieved from https://bitesizebio.com/13687/cell-counting-with-a-hemocytometer-easy-as-1-2-3/. | ||||
Klement, T., & Büchs, J. (2013). Itaconic acid-a biotechnological process in change. Bioresource Technology, 135, 422-431. https://doi.org/10.1016/j.biortech.2012.11.141 |
||||
Kumar, D., Jain, V. K., Shanker, G., & Srivastava, A. (2003). Citric acid production by solid state fermentation using sugarcane bagasse. Process Biochemistry, 38(12), 1731-1738. https://doi.org/10.1016/S0032-9592(02)00252-2 |
||||
Kumar, S., Krishnan, S., Samal, S. K., Mohanty, S., & Nayak, S. K. (2017). Itaconic acid used as a versatile building block for the synthesis of renewable resourceābased resins and polyesters for future prospective: a review. Polymer International, 66(10), 1349-1363. https://doi.org/10.1002/pi.5399 |
||||
Market Data Forecast (2021). Itaconic Acid Market. Retrieved 26th May 2021 from https://www.marketdataforecast. com/market-reports/itaconic-acid-market. | ||||
Max, B., Salgado, J. M., Rodríguez, N., Cortés, S., Converti, A., & Domínguez, J. M. (2010). Biotechnological production of citric acid. Brazilian journal of Microbiology, 41(4), 862-875. https://doi.org/10.1590/S1517-83822010000400005 |
||||
Meena, V., Sumanjali, A., Dwarka, K., Subburathinam, K. M., & Sambasiva Rao, K. R. S. (2010). Production of itaconic acid through submerged fermentation employing different species of Aspergillus. Rasayan J Chem, 3(1), 100-109. | ||||
Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426-428. https://doi.org/10.1021/ac60147a030 |
||||
Mohit, S. M., Chandrashekhar, B., Tanushree, C., & Kanwal, S. (2011). Production of bio-ethanol from Jatropha oilseed cakes via dilute acid hydrolysis and fermentation by Saccharomyces cerevisiae. International Journal of Biotechnology Applications, 3(1), 41-47. https://doi.org/10.9735/0975-2943.3.1.41-47 |
||||
Omojasola, P. F., & Adeniran, E. A. (2014). The production of itaconic acid from sweet potato peel using Aspergillus niger and Aspergillus terreus. Albanian Journal of Agricultural Sciences, 13(4), 72-77. | ||||
Onyeagba, R. A. (2004). Laboratory guide for microbiology (1st edition). Crystal Publishers, Okigwe, Imo State, Nigeria. Pp. 95-117. | ||||
Pandey, A., Soccol, C. R., & Mitchell, D. (2000). New developments in solid state fermentation: I-bioprocesses and products. Process biochemistry, 35(10), 1153-1169. https://doi.org/10.1016/S0032-9592(00)00152-7 |
||||
Petruccioli, M., Pulci, V., & Federici, F. (1999). Itaconic acid production by Aspergillus terreus on raw starchy materials. Letters in Applied Microbiology, 28(4), 309-312. https://doi.org/10.1046/j.1365-2672.1999.00528.x |
||||
Rafi, M. M., Hanumanthu, M. G., Rao, D. M., & Venkateswarlu, K. (2014). Production of itaconic acid by Ustilago maydis from agro wastes in solid state fermentation. Journal of Biological Science and Biotechnology, 3(2), 163-168. | ||||
Raja, H. A., Miller, A. N., Pearce, C. J., & Oberlies, N. H. (2017). Fungal identification using molecular tools: a primer for the natural products research community. Journal of Natural Products, 80(3), 756-770. https://doi.org/10.1021/acs.jnatprod.6b01085 |
||||
Ramakrishnan, G., Dhandapani, B., Krishnamoorthy, S., Dhithya, V., & Palaniyappan, H. (2020). Next-generation itaconic acid production using novel Aspergillus japonicas from Citrullus lanatus rind through solid-state fermentation. Bioresource Technology Reports, 11, 100544. https://doi.org/10.1016/j.biteb.2020.100544 |
||||
Ray, P., Smith, C., Simon, G. P., & Saito, K. (2017). Renewable green platform chemicals for polymers. Molecules, 22(3), 376. https://doi.org/10.3390/molecules22030376 |
||||
Sano, M., Tanaka, T., Ohara, H., & Aso, Y. (2020). Itaconic acid derivatives: structure, function, biosynthesis, and perspectives. Applied Microbiology and Biotechnology, 104, 9041-9051. https://doi.org/10.1007/s00253-020-10908-1 |
||||
Saxena, R., & Singh, R. (2011). Amylase production by solid-state fermentation of agro-industrial wastes using Bacillus sp. Brazilian Journal of Microbiology, 42, 1334-1342. https://doi.org/10.1590/S1517-83822011000400014 |
||||
Sriariyanun, M., Heitz, J. H., Yasurin, P., Asavasanti, S., & Tantayotai, P. (2019). Itaconic acid: A promising and sustainable platform chemical? Applied Science and Engineering Progress, 12(2), 75-82. | ||||
Sudarkodi, C., Subha, K., Kanimozhi, K., & Panneerselvam, A. (2012). Optimization and production of itaconic acid using Aspergillus flavus. Advances in Applied Science Research, 3(2), 1126-1131. | ||||
Wagner, K., Springer, B., Pires, V. P., & Keller, P. M. (2018). Molecular detection of fungal pathogens in clinical specimens by 18S rDNA high-throughput screening in comparison to ITS PCR and culture. Scientific reports, 8, Article number 6964. https://doi.org/10.1038/s41598-018-25129-w |
||||
Yang, J., Xu, H., Jiang, J., Zhang, N., Xie, J., Wei, M., & Zhao, J. (2019). Production of itaconic acid through microbiological fermentation of inexpensive materials. Journal of Bioresources and Bioproducts, 4(3), 135-142. |