ISSN: 2536-7064
Model: Open Access/Peer Reviewed
DOI: 10.31248/JBBD
Start Year: 2016
Email: jbbd@integrityresjournals.org
https://doi.org/10.31248/JBBD2025.235 | Article Number: 6C528B5C1 | Vol.10 (2) - June 2025
Received Date: 09 March 2025 | Accepted Date: 15 May 2025 | Published Date: 30 June 2025
Authors: Musa Filibus Gugu* , Theresa Daniel Odey , Panwul Jephtha Dingmun , Yossy Yikilgwe Maklu , Victor Ameh Adejoh and Akwashiki Ombugadu
Keywords: Antibiotic resistance, street vended foods, bacterial contamination, public health risk, suya meat.
Suya meat is a traditional meat product gotten from boneless meat hung on a stick and spiced with peanut cake, salt, vegetable oil and other flavours, followed by toasting around a glowing charcoal fire. Therefore, this study investigated the antibiotic resistance profile of bacteria isolated from suya meat, a widely consumed street-vended meat. A total of 40 suya samples were used for this study. The samples, five (5) each, were collected from eight (8) different suya meat vendors and analysed microbiologically. Results from the viable cell counts revealed significant bacterial contamination, with total bacterial counts ranging from 1.1 x 105 to 6.4 x 105 CFU/g, indicating poor hygiene practices during preparation. While many samples showed zero total coliform counts, some indicated detectable levels, suggesting potential faecal contamination risks. The bacteria isolates encountered are Staphylococcus aureus, Klebsiella aerogenes, Bacillus species, Escherichia coli, Pseudomonas aeruginosa and Proteus species. Staphylococcus aureus was the most frequently isolated organism (38.24%), followed by Bacillus species. (20.59%) and Klebsiella aerogenes (14.71%). Antibiotic susceptibility testing demonstrated alarming resistance, particularly in Escherichia. coli and Proteus species, with high resistance rates to Amoxicillin, Streptomycin, Chloramphenicol and Ampiclox. These findings underscore a growing public health concern regarding antibiotic-resistant foodborne pathogens, particularly for vulnerable populations. The study highlights the urgent need for improved hygiene practices in food preparation and emphasises the importance of public health initiatives aimed at educating food vendors. Future research should focus on intervention strategies to reduce microbial contamination and monitor antibiotic resistance trends in street foods.
Abbreviations: TBC: Total bacteria count; TCC: Total coliform count; CFU/g: Colony forming unit per gram; AM: Amoxicillin; CN: Gentamicin; S: Streptomycin; PEF: Pefloxacin; OFX: Ofloxacin; LEV: Levofloxacin; CH: Chloramphenicol; AZ: Azithromycin; APX: Ampiclox; CPX: Ciprofloxacin.
Aboagye, G., Nkekesi, B., Amenya, P., & Kortei, N. (2023). Streetāvended grilled beef sausages as potential vehicles of bacterial and fungal pathogens: An exploratory survey in Ho, the capital city of the Volta Region of Ghana. Food Science and Nutrition, 11, 7013-7025. https://doi.org/10.1002/fsn3.3625 |
||||
Adeleye, A. O., Sim, K. M., & Yerima, M. B. (2022). Bacteriological Quality Assessment of Ready-To-Eat Hawked Suya in Dutse Urban, Northwest Nigeria. Stamford Journal of Microbiology, 12(1), 25-30. https://doi.org/10.3329/sjm.v12i1.63340 |
||||
Adoh, O., & Ngozi, O. (2025). Antibiotic resistance and prevalence of bacterial contaminants in street-vended suya meat in Benin City, Nigeria. European Journal of Life Sciences, 4(1), 1-14 https://doi.org/10.55971/EJLS.1588830 |
||||
Ahmed, W., Neubauer, H., Tomaso, H., El Hofy, F. I., Monecke, S., Abd El-Tawab, A. A., & Hotzel, H. (2021). Characterization of enterococci-and ESBL-producing Escherichia coli isolated from milk of bovides with mastitis in Egypt. Pathogens, 10(2), 97. https://doi.org/10.3390/pathogens10020097 |
||||
Akinyele, H. A., Oluwaseun, A. A., Tunde, A. K., & Oluwaseun, A. C. (2024). Detection and antibiogram of bacterial contaminants in some commonly consumed indigenous street vended foods in Kasua Central Market in Kaduna North, Kaduna State, Nigeria. Dutse Journal of Pure and Applied Sciences, 10(1a), 100-110. https://doi.org/10.4314/dujopas.v10i1a.11 |
||||
Alabi, O. S., Obisesan, A. O., & Odumosu, B. T. (2021). Detection of methicillin-resistant Staphylococcus aureus and extended-spectrum beta-lactamase producers from ready-to-eat roasted beef in Ibadan north, Nigeria. Proceedings of the Nigerian Academy of Science, 14(1). https://doi.org/10.57046/CBLO6312 |
||||
Alcock, B. P., Raphenya, A. R., Lau, T. T., Tsang, K. K., Bouchard, M., Edalatmand, A., & McArthur, A. G. (2020). CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic acids research, 48(D1), D517-D525. https://doi.org/10.1093/nar/gkz935 |
||||
Amadi, L. O., Singabele, F. O., Elechi, R., & Ngerebara, N. (2016). Bacterial status and antibacterial susceptibility profiles of selected pathogens associated with Suya meat samples purchased in Bori metropolis, Rivers State, Nigeria. International Journal of Environmental Research and Public Health, 3(2), 14-19. | ||||
Amala, S., & Onwuli D. (2017). Bacterial burden of suys and Suya spice ingredients sold in some parts of Port Harcourt, Nigeria. International Journal of Current Research, 9(8), 55665 -55668. | ||||
Awoyele, A., Adesanwo, E., Oni, O., Okunlade, O., Adetunji, V., Fasiku, O., Ajulo, S., & Omotosho, O. (2023). Occurrence and Antibiotic sensitivity patterns of methicillin-resistant and methicillin-sensitive Staphylococcus aureus in pigs in Ibadan, Nigeria. Medical Science Forum, 24(1), 8. https://doi.org/10.3390/ECA2023-16398 |
||||
Bello, O., Oyekanmi, O., Kelly, B. A., Mebude O. O., & Bello T. K. (2018). Antibiotic susceptibility profiles of bacteria from diabetic foot infections in selected Teaching Hospitals in Southwestern Nigeria. International Annals of Science, 4(1), 1-13. https://doi.org/10.21467/ias.4.1.1-13 |
||||
Bello, T. K. & Bello O. O. (2020). Bacteriological safety of Suya, a ready -to -eat beef product, and its association with antibiotic - resistant pathogens in Nigeria. Carpathian Journal of Food Science and Technology, 12(5), 81-98. https://doi.org/10.34302/crpjfst/2020.12.5.6 |
||||
Boom, F. A., Le Brun, P. P., Bühringer, S., & Touw, D. J. (2020). Microbiological monitoring during aseptic handling: methods, limits and interpretation of results. European Journal of Pharmaceutical Sciences, 155, 105540. https://doi.org/10.1016/j.ejps.2020.105540 |
||||
Clinical Laboratory Standards Institute (CLSI) (2016). Performance standards for antimicrobial susceptibility testing. NCCLS approved standard M100 -S14, Wayne, PA. USA. Pp. 109. | ||||
Fleming, D., Al-Jabri, M. Y., & Patel, R. (2025). Comparative efficacy of levofloxacin, azithromycin, and doxycycline prophylaxis and treatment in an experimental Ureaplasma murine lung infection model. Antimicrobial Agents and Chemotherapy, 69(5), e01724-24. https://doi.org/10.1128/aac.01724-24 |
||||
Gwinn, M., MacCannell, D., & Armstrong, G. L. (2019). Next-generation sequencing of infectious pathogens. JAMA, 321(9), 893-894. https://doi.org/10.1001/jama.2018.21669 |
||||
Hassan, M. E., Shahriar, A., Shams, F., Nath, A. K., & Emran, T. B. (2021). Correlation between biofilm formation and antimicrobial susceptibility pattern toward extended spectrum β-lactamase (ESBL)-and non-ESBL-producing uropathogenic bacteria. Journal of Basic and Clinical Physiology and Pharmacology, 32(2), 20190296. https://doi.org/10.1515/jbcpp-2019-0296 |
||||
Heuser, E., Becker, K., & Idelevich, E. A. (2023). Evaluation of an automated system for the counting of microbial colonies. Microbiology Spectrum, 11(4), e00673-23. https://doi.org/10.1128/spectrum.00673-23 |
||||
Ike, C. C. & Akortha E. E. (2017). Microbial diversity associated with different fresh meats sold in Aba metropolis, Abia State, Nigeria. International Journal of Research and Development Organization (IJRDO) - Journal of Biological Science, 3(5), 108-121. | ||||
Ikegwuonu, E. S., Balogun, D. O., Agunloye, O. O. M., Okewu, A. A., Ibrahim, A., & Maikano, A. A. (2021). Geospatial Assessment of Groundwater Potential in Jos South Local Government Area of Plateau State, Nigeria. International Journal of Engineering Research & Technology), 10(3), 27-38. | ||||
Jessberger, N., Dietrich, R., Märtlbauer, E., Ehling-Schulz, M., & Granum, P. (2021). The food poisoning toxins of Bacillus cereus. Toxins, 13(2), 98. https://doi.org/10.3390/toxins13020098 |
||||
Jesus, T. F., Ribeiro-Gonçalves, B., Silva, D. N., Bortolaia, V., Ramirez, M., & Carriço, J. A. (2019). Plasmid ATLAS: plasmid visual analytics and identification in high-throughput sequencing data. Nucleic acids research, 47(D1), D188-D194. https://doi.org/10.1093/nar/gky1073 |
||||
Khan, H. A., Baig, F. K., & Mehboob, R. (2017). Nosocomial infections: Epidemiology, prevention, control and surveillance. Asian Pacific Journal of Tropical Biomedicine, 7(5), 478-482. https://doi.org/10.1016/j.apjtb.2017.01.019 |
||||
Lee, S. I., Kim, S. D., Park, J. H., & Yang, S. J. (2020). Species distribution, antimicrobial resistance, and enterotoxigenicity of non-aureus staphylococci in retail chicken meat. Antibiotics, 9(11), 809. https://doi.org/10.3390/antibiotics9110809 |
||||
Munim, M. A., Das, S. C., Hossain, M. M., Hami, I., Topu, M. G., & Gupta, S. D. (2024). Multi-drug resistant (MDR) Gram-negative pathogenic bacteria isolated from poultry in the Noakhali region of Bangladesh. Plos one, 19(8), e0292638. https://doi.org/10.1371/journal.pone.0292638 |
||||
Niwa, T., Morimoto, M., Hirai, T., Hata, T., Hayashi, M., & Imagawa, Y. (2016). Effect of penicillin-based antibiotics, amoxicillin, ampicillin, and piperacillin, on drug-metabolizing activities of human hepatic cytochromes P450. The Journal of Toxicological Sciences, 41(1), 143-146. https://doi.org/10.2131/jts.41.143 |
||||
Odu, N. N., & Akwasiam, B. (2016). Bacteriological quality and antibiotic susceptibility pattern of the isolates from Suya spice sold in Port Harcourt, Rivers State, Nigeria. Nature Science, 14(6), 60-68. | ||||
Ogbunugafor, H. A., Ugochukwu, C. G. & Kyrian-Ogbonna, A. E. (2017). The role of spices in nutrition and health: a review of three popular spices used in Southern Nigeria. Food Quality and Safety, 1(3), 171-185. https://doi.org/10.1093/fqsafe/fyx020 |
||||
Okinedo, J. I., Orogu J. O., Ukolobi, O., & Aphiar, A. E. (2024). Evaluation of the microorganism present in garri sold within local market and garri producers in Ozoro community. Asian Journal of Biology, 20, (6), 9-16. https://doi.org/10.9734/ajob/2024/v20i6410 |
||||
Orogu, J., & Oshilim, A. (2017). Comparative study of bacteriological analysis in hawked Suya meat and Suya meat on a barbeque stand. Journal of Microbiology Research, 3(1), 005 -008. https://doi.org/10.18685/EJMBR(3)1_EJSR-16-025 |
||||
Peirano, G., Matsumura, Y., Adams, M. D., Bradford, P., Motyl, M., Chen, L., and Pitout, J. D. (2018). Genomic epidemiology of global carbapenemase-producing Enterobacter spp., 2008-2014. Emerging Infectious Diseases, 24(6), 1010. https://doi.org/10.3201/eid2406.171648 |
||||
Shao, J., Wang, X., Hong, Y., Sun, L., Wu, Y., Shi, J., & Li, Y. (2025). Stresses in the food chain and their impact on antibiotic resistance of foodborne pathogens: A review. Food Microbiology, 128, 104741. https://doi.org/10.1016/j.fm.2025.104741 |