ISSN: 2536-7099
Model: Open Access/Peer Reviewed
DOI: 10.31248/JASVM
Start Year: 2016
Email: jasvm@integrityresjournals.org
https://doi.org/10.31248/JASVM2025.536 | Article Number: F46AFA025 | Vol.10 (2) - April 2025
Received Date: 07 January 2025 | Accepted Date: 20 February 2025 | Published Date: 30 April 2025
Authors: M. O. Ayoola* , O. F. Akinmoladun , V. I. Esan , T. O. Ogunbode , C. O. Afolabi and T. E. Lawal
Keywords: Climate change, heat stress., goat management, sustainable production, thermoregulation.
Heat stress has been identified as a significant factor affecting goat production, particularly in tropical and subtropical regions where elevated temperatures are prevalent. Numerous studies have documented the physiological and behavioural responses of goats to heat stress, such as reduced feed intake, lower growth rates, impaired reproductive performance and increased susceptibility to diseases. These effects lead(s) to decreased productivity and economic losses, which are exacerbated by climate change. This review highlights the impacts of heat stress on goats, focusing on key physiological responses such as altered reproduction, immune suppression, rumen dysfunction, acid-base imbalances, and oxidative stress. Heat stress also significantly impacts productivity by reducing feed intake, growth rates, and milk yields. High temperatures inhibit hypothalamic appetite regulation, leading to negative energy balance and reduced nutrient availability for milk synthesis. Meat quality is similarly affected, with changes in pH, tenderness, and colour. The review examines management strategies employed to mitigate these effects, including improvements in housing design for better shade and ventilation, optimised feeding regimes and water management systems. Additionally, digital technologies such as temperature sensors and automated cooling systems are discussed as innovative approaches to monitor and reduce heat stress. Genetic selection for heat tolerance is also explored as a potential long-term solution. This review aims to provide a comprehensive understanding of heat stress in goats and offers insights into effective management practices. These findings can guide future research and practical applications to enhance goat welfare and productivity in heat-stressed environments.
Adenkola, A. Y., & Okoro, L. I. (2014). Serum malondialdehyde concentration, rectal temperature and excitability score in road transported rams administered with vitamins C+E combination and vitamin C. Nigerian Veterinary Journal, 35(2), 995-1006. | ||||
Afsal, A., Sejian, V., Bagath, M., Krishnan, G., Devaraj, C., & Bhatta, R. (2018). Heat stress and livestock adaptation: Neuro-endocrine regulation. International Journal of Veterinary and Animal Medicine, 1(2), 1-8. | ||||
Aggarwal, A., & Upadhyay, R. (2013). Heat stress and animal productivity. In Heat stress and animal productivity (Vol. 188). Delhi, India: Springer. https://doi.org/10.1007/978-81-322-0879-2 |
||||
Akinmoladun, O. F., Mpendulo, C. T., & Ayoola, M. O. (2023). Assessment of the adaptation of Nguni goats to water stress. Animal, 17(8), 100911. https://doi.org/10.1016/j.animal.2023.100911 |
||||
Alabi, O. M., Ojo, J. O., Aderemi, F. A., Lawal, T. E., Oguntunji, A. O., Ayoola, M. O., & Oladejo, O. (2021). Antilipemic effect of Moringa oleifera leaf powder on blood serum cholesterol fractions in broiler finishers. International Journal of Livestock Production, 12(1), 49-52. https://doi.org/10.5897/IJLP2019.0638 |
||||
Aleena, J., Sejian, V., Bagath, M., Krishnan, G., Beena, V., & Bhatta, R. (2018). Resilience of three indigenous goat breeds to heat stress based on phenotypic traits and PBMC HSP70 expression. International Journal of Biometeorology, 62(11), 1995-2005. https://doi.org/10.1007/s00484-018-1604-5 |
||||
Al-Haidary, A. A. (2004). Physiological responses of Naimey sheep to heat stress challenge under semi-arid environments. International Journal of Agriculture and Biology, 2(6), 307-309. | ||||
Archana, P. R., Sejian, V., Ruban, W., Bagath, M., Krishnan, G., Aleena, J., Manjunathareddy, G. B., | ||||
Archana, P., Sejian, V., Ruban, W., Bagath, M., Krishnan, G., Aleena, J., Manjunathareddy, G., Beena, V., & Bhatta, R. (2018). Comparative assessment of heat stress-induced changes in carcass traits, plasma leptin profile, and skeletal muscle myostatin and HSP70 gene expression patterns between indigenous Osmanabadi and Salem Black goat breeds. Meat Science, 141, 66-80. https://doi.org/10.1016/j.meatsci.2018.03.015 |
||||
Atasoglu, C., Yurtman, I. Y., Savas, T., Gültepe, M., & Özcan, Ö. (2008). Effect of weaning on behaviour and serum parameters in dairy goat kids. Animal Science Journal, 79(4), 435-442. https://doi.org/10.1111/j.1740-0929.2008.00547.x |
||||
Atrian, P., & Shahryar, H. A. (2012). Heat stress in dairy cows (a review). Research in Zoology, 2(4), 31-37. | ||||
Ayoola, M. O., Aderemi, F. A., Alabi, O. M., Oladejo, O. A., & Abiodun, M. A. (2023). Comparative effect of vitamin complex and orange extract on physiological and blood parameters of transported pullets in humid tropics. Online Journal of Animal and Feed Research, 13(2), 97-104. https://doi.org/10.51227/ojafr.2023.15 |
||||
Ayoola, M. O., Oguntunji, A. O., & Babalola, A. T. (2020). Variation in haematological, biochemical parameters and physiological adaptation of cockerel strains to transportation density in a hot tropical environment. Journal of Animal Science and Veterinary Medicine, 5(2), 72-79, https://doi.org/10.31248/JASVM2019.156 |
||||
Bagath, M., Krishnan, G., Devaraj, C., Rashamol, V. P., Pragna, P., Lees, A. M., & Sejian, V. (2019). The impact of heat stress on the immune system in dairy cattle: A review. Research in Veterinary Science, 126, 94-102 https://doi.org/10.1016/j.rvsc.2019.08.011 |
||||
Bailey, D. W., Trotter, M. G., Knight, C. W., & Thomas, M. G. (2018). Use of GPS tracking collars and accelerometers for rangeland livestock production research. Translational Animal Science, 2, 81-88. https://doi.org/10.1093/tas/txx006 |
||||
Baumgard, L. H., & Rhoads, R. P. (2023). Heat stress impacts on cattle production. Journal of Animal Science, 101, 60-61. https://doi.org/10.1093/jas/skad341.066 |
||||
Berihulay, H., Abied, A., He, X., Jiang, L., & Ma, Y. (2019). Adaptation mechanisms of small ruminants to environmental heat stress. Animals, 9(3), 75. https://doi.org/10.3390/ani9030075 |
||||
Biswas, S., Goswami, A., Nanda, S. M., & Paul, B. (2024). Goat farming in sustainable livelihood security of rural poor people. In Trends in Clinical Diseases, Production and Management of Goats (vol. 1, pp. 63-69). Science Direct. https://doi.org/10.1016/B978-0-443-23696-9.00017-1 |
||||
Boulos, M. N. K., & Berry, G. (2017). Real-time locating systems (RTLS) in healthcare: A condensed primer. Environmental Health Perspectives, 11, Article number 25. https://doi.org/10.1186/1476-072X-11-25 |
||||
Camargo, D. A. S. L., & Pereira, F. J. (2022). Genome-editing opportunities to enhance cattle productivity in the tropics. CABI Agriculture and Bioscience, 3(8), 1-11. https://doi.org/10.1186/s43170-022-00075-w |
||||
Carabaño, M. J., Ramón, M., Menéndez-Buxadera, A., Molina, A., & Díaz, C. (2019). Selecting for heat tolerance. Animal Frontiers, 9(1), 62-68. https://doi.org/10.1093/af/vfy033 |
||||
Chauhan, S. S., Ponnampalam, E. N., Celi, P., Hopkins, D. L., Leury, B. J., & Dunshea, F. R. (2016). High dietary vitamin E and selenium improves feed intake and weight gain of finisher lambs and maintains redox homeostasis under hot conditions. Small Ruminant Research, 137, 17-23. https://doi.org/10.1016/j.smallrumres.2016.02.011 |
||||
Choudhury, A., & Mandrekar, P. (2019). Chaperones in sterile inflammation and injury. In Chaperokine Activity of Heat Shock Proteins (pp. 155-177). Springer Nature. https://doi.org/10.1007/978-3-030-02254-9_8 |
||||
Chumak, S. V., Chumak, V. O., & Horchanok, A. V. (2021). Зміни складу козиного молока за теплового стресу в умовах господарства степової зони України. Theoretical and Applied Veterinary Medicine, 9(2), 74-81. https://doi.org/10.32819/2021.92012 |
||||
Cruz, L. V., Angrimani, D. D. S., Rui, B. R., & Silva, M. A. (2011). Efeitos do estresse térmico na produção leiteira: revisão de literatura. Revista Científica Eletrônica de Medicina Veterinária, 9(16), 1-18. | ||||
Cui, Y., Zhang, M., Li, J., Luo, H., Zhang, X., & Fu, Z. (2019). WSMS: Wearable stress monitoring system based on IoT multi-sensor platform for living sheep transportation. Electronics, 8(4), 441. https://doi.org/10.3390/electronics8040441 |
||||
Dalcin, V. C., Fischer, V., Daltro, D. d. S., Alfonzo, E. P. M., Stumpf, M. T., & Kolling, G. J. (2016). Physiological parameters for thermal stress in dairy cattle. Revista Brasileira de Zootecnia, 45, 458-465. https://doi.org/10.1590/S1806-92902016000800006 |
||||
Danso, F., Iddrisu, L., Lungu, S. E., Zhou, G., & Ju, X. (2024). Effects of heat stress on goat production and mitigating strategies: A review. Animals, 14(12), 1793. https://doi.org/10.3390/ani14121793 |
||||
Das, R., Sailo, L., Verma, N., Bharti, P., & Saikia, J. (2016). Impact of heat stress on health and performance of dairy animals: A review. Veterinary World, 9(3), 260. https://doi.org/10.14202/vetworld.2016.260-268 |
||||
David, B. (2023). Managing heat stress in sheep and goat. Bulletin, Extension, University of Missouri. Retrieved from https://extension.missouri.edu/news/managing-heat-stress-in-sheep-and-goats. | ||||
Di Virgilio, A., Morales, J. M., Lambertucci, S. A., Shepard, E. L. C., & Wilson, R. P. (2018). Multi-dimensional precision livestock farming: A potential toolbox for sustainable rangeland management. PeerJ, 6, e4867. https://doi.org/10.7717/peerj.4867 |
||||
Dwyer, C. M. (2022). Farming sheep and goats. In Handbook of Animal Welfare. Routledge. https://doi.org/10.4324/9781003182351-10 |
||||
FAO (2012). Manual on sheep and goat transportation by road in developing countries. Food and Agriculture Organization of the United Nations. | ||||
Fatet, A., Pellicer-Rubio, M. T., & Leboeuf, B. (2011). Reproductive cycle of goats. Animal Reproduction Science, 124(3-4), 211-219. https://doi.org/10.1016/j.anireprosci.2010.08.029 |
||||
Fogarty, E. S., Swain, D. L., Cronin, G. M., Moraes, L. E., Bailey, D. W., & Trotter, M. (2021). Developing a simulated online model that integrates GNSS, accelerometer and weather data to detect parturition events in grazing sheep: A machine learning approach. Animals, 11(2), 303. https://doi.org/10.3390/ani11020303 |
||||
Gálik, R., Lüttmerding, G., Boďo, Š., Knížková, I., & Kunc, P. (2021). Impact of heat stress on selected parameters of robotic milking. Animals, 11(11), 3114. https://doi.org/10.3390/ani11113114 |
||||
Garner, B. A., Hand, B. K., Amish, S. J., Bernatchez, L., Foster, J. T., Miller, K. M., et al. (2016). Genomics in conservation: Case studies and bridging the gap between data and application. Trends in Ecology & Evolution, 31(2), 34-42. https://doi.org/10.1016/j.tree.2015.10.009 |
||||
Gaughan, J. B., Mader, T. L., Holt, S. M., Sullivan, M. L., & Hahn, G. L. (2010). Assessing the heat tolerance of 17 beef cattle genotypes. International Journal of Biometeorology, 54(6), 617-27. https://doi.org/10.1007/s00484-009-0233-4 |
||||
Ghosh, S., Sarkar, P., Basak, P., Mahalanobish, S., & Sil, P. C. (2018). Role of heat shock proteins in oxidative stress and stress tolerance. In Heat Shock Proteins Stress (pp. 109-126). Springer Nature. https://doi.org/10.1007/978-3-319-90725-3_6 |
||||
Gonzalez-Rivas, P. A., Prathap, P., DiGiacomo, K., Cottrell, J. J., Leury, B. J., Chauhan, S. S., & Dunshea, F. R. (2021). Reducing rumen starch fermentation of wheat with 3% NaOH does not reduce whole tract starch digestibility and increases energy utilization in wethers during heat stress. Small Ruminant Research, 204, 106523. https://doi.org/10.1016/j.smallrumres.2021.106523 |
||||
Grewal, R. K., Singh, P., & Tripathi, A. K. (2018). Transportation stress in goats: Impacts and mitigation strategies. International Journal of Current Microbiology and Applied Sciences, 7(8), 2543-2550. https://doi.org/10.20546/ijcmas.2018.703.294 |
||||
Gupta, M., Kumar, S., Dangi, S., & Jangir, B. (2013). Physiological, biochemical and molecular responses to thermal stress in goats. International Journal of Livestock Research, 3, 27-38. https://doi.org/10.5455/ijlr.20130502081121 |
||||
Habeeb, A. A. M., Gad, A. E., & Atta, M. A. (2018). Temperature-humidity indices as indicators to heat stress of climatic conditions with relation to production and reproduction of farm animals. International Journal of Biometeorology, 62, 207-216. https://doi.org/10.18689/ijbr-1000107 |
||||
Habeeb, A. A., Osman, S. F., Teama, F. E., & Gad, A. E. (2023). The detrimental impact of high environmental temperature on physiological response, growth, milk production, and reproductive efficiency of ruminants. Tropical Animal Health and Production, 55(6), 388. https://doi.org/10.1007/s11250-023-03805-y |
||||
Han, L., Batistel, F., Ma, Y., Alharthi, A. S. M., Parys, C., & Loor, J. J. (2018). Methionine supply alters mammary gland antioxidant gene networks via phosphorylation of nuclear factor erythroid 2-like 2 (NFE2L2) protein in dairy cows during the periparturient period. Journal of Dairy Science, 101(9), 8505-8512. https://doi.org/10.3168/jds.2017-14206 |
||||
Han, Z. Y., Zhou, G. B., Jin, Z. H., Wang, G. L., & Li, H. X. (2009). Effects of rumen protected methionine on performance, apoptosis of lymphocytes and related genes in dairy cows under heat stress. Chinese Journal of Animal Nutrition, 21(5), 665-672 ref. 30 | ||||
Hansen, P. J. (2019). Reproductive physiology of the heat-stressed dairy cow: Implications for fertility and assisted reproduction. Animal Reproduction, 16(3), 497-507. https://doi.org/10.21451/1984-3143-AR2019-0053 |
||||
Hayes, B. J., Lewin, H. A., & Goddard, M. E. (2013). The future of livestock breeding: Genomic selection for efficiency, reduced emissions intensity, and adaptation. Trends in Genetics, 29(4), 206-214. https://doi.org/10.1016/j.tig.2012.11.009 |
||||
Hicey, T., Harford, A., & Devaux, J. (2024). Responses and adaptations of cellular metabolism to temperature. In Encyclopedia of Fish Physiology (pp. 62-75), Second Edition. Academic Press. https://doi.org/10.1016/B978-0-323-90801-6.00158-0 |
||||
Hooda, O. K., & Singh, G. (2010). Effect of thermal stress on feed intake, plasma enzymes and blood biochemicals in buffalo heifers. Indian Journal of Animal Nutrition, 27(2), 122-127. | ||||
Horie, R., Miyasaka, T., & Yoshihara, Y. (2023). Grazing behavior of Mongolian sheep under different climatic conditions. Journal of Arid Environments, 209, 104890. https://doi.org/10.1016/j.jaridenv.2022.104890 |
||||
Hosono, S., Kogi, K., & Kusaba, T. (2019). The role of goats in traditional farming systems. Extension, University of Misouri. Retrieved from https://extension.missouri.edu/news/ managing-heat-stress-in-sheep-and-goats#:~:text=Provide% 20nutrient%2Ddense%20diets%20during,the%20impact%20of%20heat%20stress. | ||||
Islam, M. A., Lomax, S., Doughty, A., Islam, M. R., Jay, O., Thomson, P., & Clark, C. (2021). Automated monitoring of cattle heat stress and its mitigation. Frontiers in Animal Science, 2, 737213 https://doi.org/10.3389/fanim.2021.737213 |
||||
Joy, A., Dunshea, F. R., Leury, B. J., Clarke, I. J., DiGiacomo, K., & Chauhan, S. S. (2020). Resilience of small ruminants to climate change and increased environmental temperature: A review. Animals, 10(5), 867. https://doi.org/10.3390/ani10050867 |
||||
Kadim, I., Mahgoub, O., Al-Marzooqi, W., Al-Ajmi, D., Al-Maqbali, R., & Al-Lawati, S. (2008). The influence of seasonal temperatures on meat quality characteristics of hot-boned m. psoas major and minor from goats and sheep. Meat Science, 80(2), 210-215. https://doi.org/10.1016/j.meatsci.2007.11.022 |
||||
Kaliber, M., Koluman, N. A., & Silanikove, N. (2016). Physiological and behavioral basis for the successful adaptation of goats to severe water restriction under hot environmental conditions. Animal, 10(1), 82-88. https://doi.org/10.1017/S1751731115001652 |
||||
Kandemir, C., Koşum, N., & Taşkin, T. (2013). Effects of heat stress on physiological traits in sheep. Macedonian Journal of Animal Science, 3(1), 25-29. https://doi.org/10.54865/mjas1331025k |
||||
Karkori, F. (2024). Physiology of heat stress. In Ship Sanitation, Health and Hygiene: An Approach to Better Welfare for Modern Seafarers (pp. 249-271). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-51667-2_20 |
||||
Kearton, T. R., Doughty, A. K., Morton, C. L., Hinch, G. N., Godwin, I. R., & Cowley, F. C. (2020). Core and peripheral site measurement of body temperature in short wool sheep. Journal of Thermal Biology, 90, 102606. https://doi.org/10.1016/j.jtherbio.2020.102606 |
||||
Kim, E. S., Elbeltagy, A. R., Aboul-Naga, A. M., Rischkowsky, B., Sayre, B., Mwacharo, J. M., & Rothschild, M. F. (2016). Multiple genomic signatures of selection in goats and sheep indigenous to a hot arid environment. Heredity, 116(3), 255-264. https://doi.org/10.1038/hdy.2015.94 |
||||
Koluman, N. (2023). Goats and their role in climate change. Small Ruminant Research, 228, 107094. https://doi.org/10.1016/j.smallrumres.2023.107094 |
||||
Krishnan, G., Bagath, M., Pragna, P., Vidya, M. K., Aleena, J., Archana, P. R., Sejian, V., & Bhatta, R. (2017). Mitigation of the heat stress impact in livestock reproduction. Theriogenology. Pp. 63-86. https://doi.org/10.5772/intechopen.69091 |
||||
Leite, L. O., Stamm, F. D. O., & Garcia, R. D. C. M. (2017). Indicators to assess goat welfare on-farm in the semiarid region of Brazilian Northeast. Ciência Rural, 47(9), e20161073. https://doi.org/10.1590/0103-8478cr20161073 |
||||
Lewis Baida, B. E., Swinbourne, A. M., Barwick, J., Leu, S. T., & Van Wettere, W. H. E. J. (2021). Technologies for the automated collection of heat stress data in sheep. Animal Biotelemetry, 9, Article number 4 https://doi.org/10.1186/s40317-020-00225-9 |
||||
Lewis, K. E., Price, E., Croft, D. P., Green, L. E., Ozella, L., Cattuto, C., & Langford, J. (2023). Potential role of biologgers to automate detection of lame ewes and lambs. Applied Animal Behaviour Science, 259, 105847. https://doi.org/10.1016/j.applanim.2023.105847 |
||||
Li, Z., Fan, Y., Bai, H., Zhang, J., Mao, S., & Jin, W. (2023). Live yeast supplementation altered the bacterial community's composition and function in rumen and hindgut and alleviated the detrimental effects of heat stress on dairy cows. Journal of Animal Science, 101, skac410. https://doi.org/10.1093/jas/skac410 |
||||
Li, Z., Fang, B., Dong, P., & Shan, W. (2024). Selective sweep analysis of the adaptability of the Yarkand hare (Lepus yarkandensis) to hot arid environments using SLAF‐seq. Animal Genetics, 55(4), 681-686. https://doi.org/10.1111/age.13440 |
||||
Lian, P., Braber, S., Garssen, J., Wichers, H. J., Folkerts, G., Fink-Gremmels, J., & Varasteh, S. (2020). Beyond heat stress: Intestinal integrity disruption and mechanism-based intervention strategies. Nutrients, 12(3), 734. https://doi.org/10.3390/nu12030734 |
||||
Liu, Z., Lin, Y., Hoover, J., Beene, D., Charley, P. H., & Singer, N. (2023). Individual level spatial-temporal modelling of exposure potential of livestock in the Cove Wash watershed, Arizona. Annals of GIS, 29(1), 87-107. https://doi.org/10.1080/19475683.2022.2075935 |
||||
Lopes, M. G., Dominguez, J. H. E., Corrêa, M. N., Schmitt, E., & Fischer, G. (2019). Rumen-protected methionine in cattle: influences on reproduction, immune response, and productive performance. Arquivos do Instituto Biológico, 86, e1292018. https://doi.org/10.1590/1808-1657001292018 |
||||
Marai, I. F. M., El-Darawany, A. A., Abou-Fandoud, E. I., & Abdel-Hafez, M. A. M. (2004). Reproductive traits and the physiological background of the seasonal variations in Egyptian Suffolk ewes under the conditions of Egypt. Annals of Arid Zone, 43(2), 1-9. | ||||
Marai, I. F. M., El-Darawany, A. A., Fadiel, A., & Abdel-Hafez, M. A. M. (2008). Reproductive performance traits as affected by heat stress and its alleviation in sheep-A review. Tropical Animal Health and Production, 40, 533-544. | ||||
Marsden, K. A., Lush, L., Holmberg, J. A., Harris, I. M., Whelan, M. J., Webb, S., King, A. J., Wilson, R. P., Jones, D. L., & Charteris, A. F. (2021). Quantifying the frequency and volume of urine deposition by grazing sheep using tri-axial accelerometers. Animal, 15(6), 100234. https://doi.org/10.1016/j.animal.2021.100234 |
||||
Meunier, B., Delval, E., Cirié, C., Mialon, M. M., Pradel, P., Gaudron, Y., et al. (2017). Automated measurement of dairy cow grooming behaviour from real-time location system. In Proceedings of the 8th European Conference on Precision Livestock Farming (pp. 77-83). | ||||
Mishra, S. R., Kundu, A. K., & Mahapatra, A. P. K. (2013). Effect of ambient temperature on membrane integrity of spermatozoa in different breeds of bulls. The bioscan, 8(1), 181-183. | ||||
Misztal, I. (2017). Breeding and genetics symposium: Resilience and lessons from studies in genetics of heat stress. Journal of Animal Science, 95, 1780-1787. https://doi.org/10.2527/jas2016.0953 |
||||
Młynek, K., Strączek, I., & Głowińska, B. (2022). The occurrence of a negative energy balance in Holstein-Friesian and Simmental cows and its association with the time of resumption of reproductive activity. Metabolites, 12(5), 448. https://doi.org/10.3390/metabo12050448 |
||||
Mustafi, S. B., Chakraborty, P. K., Dey, R. S., & Raha, S. (2009). Heat stress upregulates chaperone heat shock protein 70 and antioxidant manganese superoxide dismutase through reactive oxygen species (ROS), p38MAPK, and Akt. Cell Stress & Chaperones, 14(6), 579. https://doi.org/10.1007/s12192-009-0109-x |
||||
Mustefa, A., Banerjee, S., Gizaw, S., Taye, M., Getachew, T., Areaya, A., Abebe, A., & Besufekad, S. (2019). Reproduction and survival analysis of Boer and their crosses with Central Highland goats in Ethiopia. Livestock Research for Rural Development, 31(10). | ||||
Mwacharo, J. M., Kim, E. S., Elbeltagy, A. R., Aboul-Naga, A. M., Rischkowsky, B. A., & Rothschild, M. F. (2017). Genomic footprints of dryland stress adaptation in Egyptian fat-tail sheep and their divergence from East African and Western Asia cohorts. Scientific Reports, 7(1), 17647. https://doi.org/10.1038/s41598-017-17775-3 |
||||
Nair, M. R., Sejian, V., Silpa, M. V., Fonsêca, V. F. C., de Melo Costa, C. C., Devaraj, C., & Bhatta, R. (2021). Goat as the ideal climate-resilient animal model in tropical environment: Revisiting advantages over other livestock species. International Journal of Biometeorology, 65, 2229-2240. https://doi.org/10.1007/s00484-021-02179-w |
||||
Nardone, A., Ronchi, B., Lacetera, N., Ranieri, M. S., & Bernabucci, U. (2010). Effects of climate changes on animal production and sustainability of livestock systems. Livestock Science, 130(1-3), 57-69. https://doi.org/10.1016/j.livsci.2010.02.011 |
||||
Nguembou, D. R., Ngoula, E. N., Tchienkoua, B., & Youpou, Y. G. (2014). Effect of transportation stress on physiological parameters and carcass quality of goats slaughtered in Yaoundé, Cameroon. Asian Journal of Animal & Veterinary Advances, 9(8), 555-562. | ||||
Nichi, M., Bols, P. E. J., Züge, R. M., Barnabe, V. H., Goovaerts, I. G. F., & Barnabe, R. C. (2006). Seasonal variation in semen quality in Bos indicus and Bos taurus bulls raised under tropical conditions. Theriogenology, 66(4), 822-828. https://doi.org/10.1016/j.theriogenology.2006.01.056 |
||||
Ocheja, O. B., Ayo, J. O., Aluwong, T., & Minka, N. S. (2020). Ameliorative effects of L-glutamine on haematological parameters in heat-stressed Red Sokoto goats. Journal of Thermal Biology, 90, 102571. https://doi.org/10.1016/j.jtherbio.2020.102571 |
||||
Oguntunji A. O., Oladejo O. A., Ayoola M. O., Oluwatomini I., Oriye L. O. & Egunjobi I. M. (2019). Genetic variation in physiological adaptation of local, exotic and crossbred ducks to heat stress in a tropical environment. Genetic and Biodiversity Journal, 3(1), 35-45. https://doi.org/10.46325/gabj.v3i1.48 |
||||
Okoruwa, M. I. (2014). Effect of heat stress on thermoregulatory, live bodyweight and physiological responses of dwarf goats in southern Nigeria. European Scientific Journal, 10(27), 255-264. | ||||
Onyewotu, L. O. Z., Stigter, C. J., Abdullahi, A. M., Ariyo, J. A., Oladipo, E. O., & Owonubi, J. J. (2003). Reclamation of desertified farmlands and consequences for its farmers in semiarid northern Nigeria: A case study of Yambawarehabilitation scheme. Arid Land Research and Management, 17(1), 85-101. https://doi.org/10.1080/15324980301590 |
||||
Ortiz, A. M., Solaiman, S. G., Maloney, M. A., & Reddy, G. (2019). Effects of heat stress on feed intake, water intake, and thermo-regulation in goats. Small Ruminant Research, 176, 41-47. | ||||
Osei-Amponsah, R., Chauhan, S. S., Leury, B. J., Cheng, L., Cullen, B., Clarke, I. J., & Dunshea, F. R. (2019). Genetic selection for thermotolerance in ruminants. Animals, 9(11), 948. https://doi.org/10.3390/ani9110948 |
||||
Park, S. J., Beak, S. H., Jung, D. J. S., Kim, S. Y., Jeong, I. H., Piao, M. Y., Kang, H. J., Fassah, D. M., Na, S. W., & Yoo, S. P. (2018). Genetic, management, and nutritional factors affecting intramuscular fat deposition in beef cattle: A review. Asian-Australasian Journal of Animal Sciences, 31(7), 1043-1061. https://doi.org/10.5713/ajas.18.0310 |
||||
Parnell, D., Edwards, J., & Ingram, L. (2023). Exploring whether grazing patterns differed in native or introduced pastures in the Monaro region of Australia. Animals, 13(9), 1500. https://doi.org/10.3390/ani13091500 |
||||
Peacock, C. (2015). Goats: Sustainable production and marketing in the tropics. Routledge, 8(11) 210-216. | ||||
Price, E., Langford, J., Fawcett, T. W., Wilson, A. J., & Croft, D. P. (2022). Classifying the posture and activity of ewes and lambs using accelerometers and machine learning on a commercial flock. Applied Animal Behaviour Science, 251, 105630. https://doi.org/10.1016/j.applanim.2022.105630 |
||||
Pryce, J. E., Douglas, P., Reich, C. M., Chamberlain, A. J., Bowman, P. J., Nguyen, T. T. T., Mason, B. A., Prowse-Wilkins, C. P., Nieuwhof, G. J., Hancock, T. (2016). Reliabilities of Australian dairy genomic breeding values increase through the addition of genotyped females with excellent genotypes. Proceedings of the Association for the Advancement of Animal Breeding and Genetics, 22, 133-136. | ||||
Rahardja, D. P., Toleng, A. L., & Lestari, V. S. (2011). Thermoregulation and water balance in fat-tailed sheep and Kacang goat under sunlight exposure and water restriction in a hot and dry area. Animal, 5(10), 1587-1593. https://doi.org/10.1017/S1751731111000577 |
||||
Ren, K., Karlsson, J., Liuska, M., Hartikainen, M., Hansen, I., & Jørgensen, G. H. (2020). A sensor-fusion system for tracking sheep location and behaviour. International Journal of Distributed Sensor Networks, 16(5), 1-10. https://doi.org/10.1177/1550147720921776 |
||||
Renaudeau, D., Collin, A., Yahav, S., de Basilio, V., Gourdine, J. L., & Collier, R. J. (2012). Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal, 6(5), 707-728. https://doi.org/10.1017/S1751731111002448 |
||||
Ribeiro, N. L., Costa, R. G., Pimenta Filho, E. C., Ribeiro, M. N., & Bozzi, R. (2018). Effects of the dry and the rainy season on endocrine and physiologic profiles of goats in the Brazilian semi-arid region. Italian Journal of Animal Science, 17(2), 454-461. https://doi.org/10.1080/1828051X.2017.1393320 |
||||
Rong, Y., Zeng, M., Guan, X., Qu, K., Liu, J., Zhang, J.(2019). Association of HSF1 genetic variation with heat tolerance in Chinese cattle. Animals, 9(12), 3-9. https://doi.org/10.3390/ani9121027 |
||||
Salvin, H., Cafe, L., Lees, A., Morris, S., & Lee, C. (2020). A novel protocol to measure startle magnitude in sheep. Applied Animal Behaviour Science, 228, 104996. https://doi.org/10.1016/j.applanim.2020.104996 |
||||
Sejian, V., Bagath, M., Krishnan, G., Rashamol, V. P., Pragna, P., Devaraj, C., & Bhatta, R. (2019). Genes for resilience to heat stress in small ruminants: A review. Small Ruminant Research, 173, 42-53. https://doi.org/10.1016/j.smallrumres.2019.02.009 |
||||
Sejian, V., Naqvi, S. M. K., Ezeji, T., Lakritz, J., & Lal, R. (2012). Environmental stress and amelioration in livestock production. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-29205-7 |
||||
Sejian, V., Shashank, C. G., Silpa, M. V., Madhusoodan, A. P., Devaraj, C., & Koenig, S. (2022). Non-invasive methods of quantifying heat stress response in farm animals with special reference to dairy cattle. Atmosphere, 13(10), 1642. https://doi.org/10.3390/atmos13101642 |
||||
Silpa, M. V., Madhusoodanan, A. P., & Sejian, V. (2021). Genetic and epigenetic factors associated with heat stress tolerance in livestock. Journal of Thermal Biology, 98, 102927. | ||||
Singh, S. P., Kumar, A., & Sourya, N. (2021). Effects of heat stress on animal production. International Journal of Fisheries and Biological Sciences, 8(2), 16-20. https://doi.org/10.22271/23940522.2021.v8.i2a.806 |
||||
Swenson, M. J., & Reece, W. O. (2006). Dukes - Fisiologia dos Animais Domésticos. Rio de Janeiro: Guanabara Koogan S.A. | ||||
Vazquez-Diosdado, J. A., Paul, V., Ellis, K. A., Coates, D., Loomba, R., & Kaler, J. (2019). A combined offline and online algorithm for real-time and long-term classification of sheep behaviour: Novel approach for precision livestock farming. Sensors, 19(14), 3201. https://doi.org/10.3390/s19143201 |
||||
Walker, A. M., Jonsson, N. N., Waterhouse, A., McDougall, H., Kenyon, F., McLaren, A., & Morgan-Davies, C. (2024). Development of a novel Bluetooth low energy device for proximity and location monitoring in grazing sheep. Animal, 18(9), 101276. https://doi.org/10.1016/j.animal.2024.101276 |
||||
World Organisation for Animal Health (OIE) (2018). Terrestrial animal welfare code and recommendations for sheep and goats. World Organisation for Animal Health. | ||||
Zhang, M., Dunshea, F., Warner, R., DiGiacomo, K., Osei-Amponsah, R., & Chauhan, S. S. (2020). Impacts of heat stress on meat quality and strategies for amelioration: A review. International Journal of Biometeorology, 64(9), 1613-1628. https://doi.org/10.1007/s00484-020-01929-6 |
||||
Zhao, Y., Wang, Y., Tian, J., He, Y., Li, J., Liu, Y., & Zhu, X. (2023). Heat stress impacts on feed intake, metabolic parameters, and hormonal responses in dairy cattle: A meta-analysis. Journal of Dairy Science, 106(7), 5234-5247. | ||||
Zulfiqar, M., Rizwan, M., Rehman, Z. U., Javed, R., & Hussain, K. (2021). The effect of environmental heat stress on physiological, hematological, and reproductive performance of livestock. Journal of Thermal Biology, 98, 102915. |