ISSN: 2536-7099
Model: Open Access/Peer Reviewed
DOI: 10.31248/JASVM
Start Year: 2016
Email: jasvm@integrityresjournals.org
https://doi.org/10.31248/JASVM2024.505 | Article Number: 93D7673011 | Vol.9 (6) - December 2024
Received Date: 06 November 2024 | Accepted Date: 20 December 2024 | Published Date: 30 December 2024
Authors: Sa’aci, Z. A.* , Alabi, O. J. , Jiya, E. Z. , Ijaiya, A. T. , Mbajiorgu E. F. and Egwim, E. C.
Keywords: haematology, Broiler chickens, immune competence, nano zinc, selenium, serum biochemical profile
The study evaluated the effect of dietary supplementation of nano zinc and selenium on haematology, serum biochemical parameters and immune function of broiler chickens. Seven hundred and sixty-eight (768) one-day-old Arbor acre broiler chicks were arranged in a 4 × 4 factorial layout in a Completely Randomized Design based on dietary zinc and selenium nanoparticles into sixteen treatments consisting of four replicates with 12 birds per replicate for an experimental duration of 29 days. Birds were reared on deep litter and fed basal diets enriched with four levels of nano zinc (20, 30, 40 and 50 mg/kg NZn) and four levels of nano selenium (0.10, 0.15, 0.20 and 0.25 mg/kg NSe). On day 49, blood samples were collected from two randomly selected birds in each replicate to determine haematology, serum biochemical profile and immunoglobulin concentrations. Data generated were subjected to a two-way analysis of variance using the General Linear Model of Statistical Package for Social Science (SPSS version 16.0). Results indicated haemoglobin, PCV, RBC, neutrophils, lymphocytes and glucose, urea creatinine, cholesterol, albumin, nitrogen, aspartate amino transaminase and alkaline phosphatase were significantly (p<0.05) improved by 50 mg of Zn/kg with 0.15 mg of Se/kg and their values are within the range of reference values. Birds fed up to 50 mg/kg NZn revealed enhanced thymus, bursa of Fabricius, spleen and IgM. Similarly, 0.10 to 0.25 mg/kg NSe improved the bursa of Fabricius, IgA, IgG and IgM. Dietary supplementation of nano zinc and selenium improved blood biochemical parameters and increased immunity without any detrimental effect on the birds’ health.
Abudabos, A. M., Alyemni, A. H., Dafalla, Y. M., & Khan, R. U. (2017). Effect of organic acid blend and Bacillus subtilis alone or in combination on growth traits, blood biochemical and antioxidant status in broilers exposed to Salmonella typhimurium challenge during the starter phase. Journal of Applied Animal Research, 45(1), 538-542. https://doi.org/10.1080/09712119.2016.1219665 |
||||
Alabi, O. J., Ng'ambi, J. W., Mbajiorgu, E. F., Norris, D., & Mabelebele, M. (2015). Growth and haematological response of indigenous V enda chickens aged 8 to 13 weeks to varying dietary lysine to energy ratios. Journal of Animal Physiology and Animal Nutrition, 99(3), 436-441. https://doi.org/10.1111/jpn.12277 |
||||
Bakhshalinejad, R., Kakhki, R. A. M., & Zoidis, E. (2018). Effects of different dietary sources and levels of selenium supplements on growth performance, antioxidant status and immune parameters in ross 308 broiler chickens, British Poultry Science, 59, 81-91. https://doi.org/10.1080/00071668.2017.1380296 |
||||
Bartlett, J. R. & Smith, M.O. (2003). Effects of different levels of zinc on the performance and immune competence of broilers under heat stress. Journal of Poultry Science, 82, 1580-1588. https://doi.org/10.1093/ps/82.10.1580 |
||||
Boostani, A., Sadeghi, A.A., Mousavi, S.N. Chamani, M. & Kashan, N. (2015). Effect of inorganic, organic or nano Selenium on blood attributes in broiler chickens exposed to oxidative stress. Acta Scientiae Veteriariae, 43, 1264-1278. | ||||
Bounous, D. L., & Stedman N. L. (2000). Normal avian haematology: Chickens and Turkey. In Feldman, B. F., Zinki, J. G. & Jain N. C. (eds.). Schalms veterinary haematology. New York: wily. Pp. 1147-1154. | ||||
Burrell, A. L., Dozier, W. A., Davis, A. J., Compton, M. M., Freeman, M. E., Vendrell, P. F., & Ward, T. L. (2004). Responses of broilers to dietary zinc concentrations and sources in relation to environmental implications. Journal of Poultry Science, 45, 255-263. https://doi.org/10.1080/00071660410001715867 |
||||
Cai, S. J., Wu, C. X., Gong, L. M., Song, T., Wu, H. & Zhang, L. Y. (2012). Effect of nano selenium on performance, meat quality, immune function, oxidation resistance and tissue selenium content in broiler chickens. Journal of Poultry Science, 91, 2532-2539. https://doi.org/10.3382/ps.2012-02160 |
||||
Catherine, Y. D. (1985). Immunoglobulin concentrations in serum and secretions of vitamin A deficient broiler chicks following Newcastle disease virus vaccination. A PhD Dissertation Submitted to the Graduate Faculty, Iowa State University, Ames Ames Iowa. | ||||
Chand, N. S., Naz Khan, A., Khan, S., & Khan, R. U. (2014). Performance traits and immune response of broiler chicks treated with zinc and ascorbic acid enriched dietsduring cyclic heat stress. International Journal of Biometeorology, 58, 2153-2157. https://doi.org/10.1007/s00484-014-0815-7 |
||||
Chen, G., Wu, J., Li, C. (2014). Effect of different selenium sources on production performance and biochemical parameters of broilers. Journal of Animal Physiology and Nutrition,13, 144-1452. https://doi.org/10.1111/jpn.12136 |
||||
Chen, J. & Berry, M. J. (2003). Selenium and selenoproteins in the brain and brain diseases. Journal of Neurochemical Science, 86, 1-12. https://doi.org/10.1046/j.1471-4159.2003.01854.x |
||||
Chrastinova, L., Cobanova, K., Chrenkova, M., Polacikova, M., Foemelova, Z., Laukova, L., Oondruska, A., Pogany, S.M., Strompfova, V., Mlynekova, Z., Kalafova, A. & Gresakov, L. (2016). Effectof dietary zinc supplementation on nutrients digestibility and fermentation characteristics of caecal content in physiological experiment with young rabbits. Slovakia Journal of Animal Science, 1, 23-31. | ||||
Dalia, A. M., Loh, T. C., Sazili, A. Q., Jahromi, M. F., & Samsudin, A. A. (2017). The effect of dietary bacterial organic selenium on growth performance, antioxidant capacity, and Selenoproteins gene expression in broiler chickens. BMC Veterinary Research, 10, 1159-1167 https://doi.org/10.1186/s12917-017-1159-4 |
||||
Dardenne, M., & Bach, J. M. (1993). Rationale for the mechanism of zinc interaction in the immune system In: S. Cunningham-Rundles (ed.). Nutrient modulation of the immune response (pp. 501-509). Marcel Dekker Inc., New York, NY. https://doi.org/10.1201/9781003066644-37 |
||||
Donmez, N., Huseyin, D. H., & Ercan Keskin, I. K. (2001). Effects of zinc supplementation to ration on some hematological parameters in broiler chicks. Biological Trace Element Research, 87: 125-131. https://doi.org/10.1385/BTER:87:1-3:125 |
||||
Du, L., Jiang, H., Liu, X., & Wang E. (2007) Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5a and its application on direct electrochemistry of haemoglobin. Electrochemistry Communications, 9, 1165-1170. https://doi.org/10.1016/j.elecom.2007.01.007 |
||||
El-Katcha, M., Soltan, M. A., & El-badry (2017). Effect of dietary replacement of inorganic zinc by organic or nanoparticles sources on growth performance, immune response and intestinal histopathology of broiler chickens. Alexandria Journal of Veterinary Science, 55(2), 129-145. https://doi.org/10.5455/ajvs.266925 |
||||
Fawzy, M. M., El-Sadawi, H. A., El- Dien, M. H., & Mohammed W. A. M. (2016). Haematology and biochemical performance of poultry following zinc oxide and sodium selenite supplementation as feed additives. Annals of Clinical Pathology, 4, 4, 1076. | ||||
Fayiz, M. R. M., T. E., Talaat, K. E., Adel, I. A., Sabry, A. A. E., Sarah, Y. A. A., Mahmoud, M., & Mahmoud, A. (2021) Use of biological nano zinc as a feed additive in quail nutrition: biosynthesis, antimicrobial activity and its effect on growth, feed utilization, blood metabolites and intestinal microbiota. Italian Journal of Animal Science, 20(1), 324-335. https://doi.org/10.1080/1828051X.2021.1886001 |
||||
Geetha, K., Chellapandian, M., Arulnathan, N., & Ramanathan, A. (2020). Nano zinc oxide an alternate zinc supplement for livestock. Veterinary World, 13(1), 121-26. https://doi.org/10.14202/vetworld.2020.121-126 |
||||
George, R. K. (2009). Biochemistry laboratory. Philadelphia. www.jbc.org. | ||||
Guyton, A. C. & Hall, J. E. (2006). Text-book of medical physiology. 11th Edition. Elsevier Inc, Philadelphia, Pa. | ||||
Hafez, A., Hegazi, S. M., Bakr, A. A., & El- Shishtawy, H. (2017) Effect of zinc oxide nanoparticles on growth performance and absorptive capacity of the intestinal villi in broiler chickens. Life Science Journal, 14(11), 125-129. | ||||
Haiam, S. A., Faten, A. M. Attia, Saber, H. S., & Hermes, I. H. (2020). Impacts of zinc oxide nano-particles supplementation in broiler diets on growth performance, some carcass characteristics and immune organs. Egyptian J. Nutrition and Feeds, 23(1), 113-122. https://doi.org/10.21608/ejnf.2020.95825 |
||||
Hassan, R. A., Soliman, E. S., Hamad, R. T., El-Borady, O. M., Ali, A. A. & Hela, M. S. (2020). Selenium and nano-selenium ameliorations in two breeds of broiler chickens exposed to heat stress. South African Journal of Animal Science, 2, 50-56. https://doi.org/10.4314/sajas.v50i2.5 |
||||
Hatab, M.H., Rashad, E., Hisham, M., Saleh, E.R. & Abu-Taleb, A.M. (2022). Effects of dietary supplementation of zinc oxide nanoparticles on productive performance, physiological, histological changes and tissues Zn concentration in broiler chicks. Retrieved from https://assets-eu.researchsquare.com/ files/rs-1523659/v1/0815af8f-7382-4ceb-8059-1759ec56a9e1.pdf?c=1654539268 | ||||
Hayes, D. P. (2008). Adverse effects of nutritional inadequacy and excess: A hormetic model. America Journal of Clinic Nutrition, 88, 578S-581S. https://doi.org/10.1093/ajcn/88.2.578S |
||||
Huang, X., Sun, B., Zhang, J., Gao, Y., Li, G. & Chang, Y. (2017). Selenium deficiency induced injury in chicken muscular stomach by Downregulating Selenoproteins. Biology Trace Element Research, 6, 1-7. https://doi.org/10.1007/s12011-017-0946-x |
||||
Hudson, B. P., Dozier, W. A. & Wilson, J. L. (2004). Broiler live performance response to dietary zinc source and the influence of zinc enriched dietsin broiler breeder diets. Animal Feed Science and Technology, 118, 329-335. https://doi.org/10.1016/j.anifeedsci.2004.10.018 |
||||
Ibrahim, D., Kishawy, A. T., Khater, S. I., Hamed Arisha, A., Mohammed, H. A., Abdelaziz, A. S., Abd El-Rahman, G. I., & Elabbasy, M. T. (2019). Effect of dietary modulation of selenium form and level on performance, tissue retention, quality of frozen stored meat and gene expression of antioxidant status in ross broiler chickens. Animals, 9(6), 342. https://doi.org/10.3390/ani9060342 |
||||
Iyaode, I. I., Ibrahim H. O., Uwade, F., & Shittu, M. W. (2020). Haematology and serum biochemistry of broiler strains (Cobbs and Arbor-acre) fed ginger (Zingiber officinale) GSC Biological and Pharmaceutical Sciences, 11(02), 320-326. https://doi.org/10.30574/gscbps.2020.11.2.0145 |
||||
Jamima, J., Veeramani, P., Kumanan, K., & Kanagaraju, P. (2020). Production Performance, Haematology and Serum Biochemistry of Commercial Broilers Supplemented with nano selenium and other anti-stressors, Indian Journal of Animal Research, 54(11), 4-6. https://doi.org/10.18805/ijar.B-3902 |
||||
Jay, V., & Shafkat, R. (2018). Biosynthesis of Selenium Nanoparticles using Aloe vera Leaf Extract. International Journal of Advance Research, 6(1), 104-110. https://doi.org/10.21474/IJAR01/6191 |
||||
Kaminski, P., Jerzak, L., Spackeds, T. H., Johnston, A., Bochenski, M., & Kasprzak, M. (2014). Sex and other sources of variation in the haematological parameters of white stork ciconia ciconia chicks. Journal of Ornithology, 155(1), 307-314. https://doi.org/10.1007/s10336-013-1016-6 |
||||
Khan, T. A., & Zafar F. (2005). Haematological study in response to varying doses of estrogen in broiler chicken. International Journal of Poultry Science, 10, 748-751. https://doi.org/10.3923/ijps.2005.748.751 |
||||
Kidd, M. T., Qureshi, M. A., Ferket, P. R., & Thomas, L. N. (2000). Turkey hen zinc source affects progeny immunity and disease resistance. Journal of Applied Poultry Research, 9, 414-423. https://doi.org/10.1093/japr/9.3.414 |
||||
Liu, Z. H., Lu, S. F. Li, L. Y. Zhang, L., Xi, K. Y., & Luo, X. G. (2011). Effects of supplemental zinc source and level on growth performance, carcass traits, and meat quality of broilers. Journal of Poultry Science, 90, 1782-1790. https://doi.org/10.3382/ps.2010-01215 |
||||
Marye, J., & Inbathamizh, L. (2012). Green synthesis and characterization of nano silver using leaf extract of morindapubescens. Journal of Pharmaceutical Clinical Research, 5, 159-162. | ||||
Meluzzi, A., Primiceri, G., Giordani, R., & Fabris, G. (1992). Determination of blood constituents reference values in broilers. Poultry Science Journal, 71, 337-345. https://doi.org/10.3382/ps.0710337 |
||||
Minna Meterological Station (2022). Climate and average weather around Minna, Nigeria. | ||||
Mohamed, I., El-Sabry, H., Kenneth, W., McMillin, H., & Cristina, M. S. (2018). Nanotechnology considerations for poultry and livestock production systems. A review of Annual Animal Science 18, 319-334. https://doi.org/10.1515/aoas-2017-0047 |
||||
Mohammadi, F., Ahmadi, F., & Amiri Andi, M. (2015). Effect of zinc oxide nanoparticles on carcass parameters, relative weight of digestive and lymphoid organs of broiler fed wet diet during the starter period. International Journal of Biosciences, 6(2), 389-394. https://doi.org/10.12692/ijb/6.2.389-394 |
||||
Mohapatra, P., Swain, R. K., Mishra, S. K., Behera, T., Swain, P., Behura, N. C., Sahoo, A., Sethy, K., Bhol, B. P., & Dhama, K. (2014). Effects of dietary nano-selenium supplementation on the performance of layer grower birds. Asian Journal of Animal and Veterinary Advances, 9(10), 641-652. https://doi.org/10.3923/ajava.2014.641.652 |
||||
National Research Council (NRC) (1994). Nutrient requirements of poultry, 9th edition. National Academic Press, Washington, DC. 10. | ||||
Odunitan-Wayas, F., Kolanisi, U., & Chimonyo, M. (2018). Haematological and Serum Biochemical Responses of Ovambo Chickens Fed Provitamin A Biofortified Maize. Brazilian Journal of Poultry Science, 20(3), 425-434. https://doi.org/10.1590/1806-9061-2016-0444 |
||||
Onunkwo, D. N., Amoduruonye, W., & Daniel-Igwe, G. (2018). Haematology and serological response of broiler chickens fed varying levels of direct fed microbes as feed additive. Nigerian Agricultural Journal, 49(1), 164-171. | ||||
Raina, D., Tiwari, S. P., Meenu, D., Gendley, M. K., Dutta, G. K., & Rupal, P. (2018). Evaluation of Haemato-Biochemical Profiles of Broiler Chicken Supplemented with Dietary Minerals. International Journal of Current Microbiology and Applied Sciences, 7(4), 2319-7706. https://doi.org/10.20546/ijcmas.2018.704.053 |
||||
Rotruck, J., Pope, A., Ganther, H., Swanson, A., Hafeman, D. G., & Hoekstra, W. (2009). Selenium: biochemical role as a component of glutathione peroxidase. Applied Science Journal, 179, 588-590. https://doi.org/10.1126/science.179.4073.588 |
||||
Sahoo, A., Swain, R. K. & Mishra, S. K. (2014b). Effect of inorganic, organic and nano zinc supplemented diets on bioavailability and immunity status of broilers. International Journal of AdvanceResearch, 11, 828-837. | ||||
Sahoo, A., Swian, R. K., Mishra, S. K., & Jena, B. (2014a). Serum biochemical indices of broiler birds fed on inorganic, organic and nano zinc enriched diets. International Journal of Recent Scientific Research, 11, 2078-2081. | ||||
Salim, H. M., Lee, H. R., Jo, C., Lee, S. K., & Lee, B. D. (2012). Effect of dietary zinc proteinate enriched diets on growth performance, and skin and meat quality of male and female broiler chicks. British journal of Poultry Science, 53, 116-124. https://doi.org/10.1080/00071668.2012.658757 |
||||
Sawosz, E., Grodzik, M., Zielin'ska, M., Niemiec, T., Olszan'ska, B., & Chwalibog, A. (2009). Nanoparticles of silver do not affect growth, development and DNA oxidative damage in chicken embryos. Archiv fur Geflugelkunde, 73, 208-213. | ||||
Senanayake, S. S. H. M. M. L., Ranasinghe , J. G. S., Waduge, R., Nizanantha, K., & Alexander, P. A. B. D. (2015). Changes in the serum enzyme levels and liver lesions of broiler birds reared under different management conditions. Tropical Agricultural Research, 26(4), 584 - 595. https://doi.org/10.4038/tar.v26i4.8121 |
||||
Soni, N., Mishra, S. K., Swain, R., Das, A., Chichilichi, B., & Sethy, K. (2013). Bioavailability and Immunity Response in Broiler Breeders on Organically Complexed Zinc Supplementation. Journal of Food and Nutrition Science, 4, 1293-1300. https://doi.org/10.4236/fns.2013.412166 |
||||
Surai, P. F. (2006). Selenium in nutrition and health. Nottingham, Nottingham University Press. | ||||
Surai, P. F., Fisinin, V. I., & Karadas, F. (2016). Antioxidant systems in chick embryo development. Part 1. Vitamin E, carotenoids and selenium. Animal Nutrition Journal, 2, 1-11. https://doi.org/10.1016/j.aninu.2016.01.001 |
||||
Swain, P. S., Rajendran, D., Rao, S. B. N., & Dominic, G. (2015). Preparation and effects of nano mineral particle feeding in livestock: A review. Veterinary World, 8(7), 888-891. https://doi.org/10.14202/vetworld.2015.888-891 |
||||
Tayeb, I. T., & Qader, G. K. (2012) Effect of feed enriched diets ofr selenium and vitamin E on production performance and some hematological parameters of broiler chickens. KSU Journal of Natural Science, 15(3), 46-56. | ||||
Usama, T. M., Hosnia, S., Abdel-Mohsein, M. A., Mahmoud, M., Omar, A. A., Rasha, I. M. H., Ashraf, M. A., Sohair, M. M. R., Hanan, S. A. W., Aly, A. O., & Mohamed, A. O. (2020). Effect of zinc oxide nanoparticles on broilers' performance and health status. Tropical Animal Health and Production, 52, 2043- 2054. https://doi.org/10.1007/s11250-020-02229-2 |
||||
World Organization for Animal Health OIE (2009). Manual of diagnostic tests and vaccines for terrestrial animals: mammals, birds and bees, 5th ed, vol 1, part 2, chapter 2.3.14, Pp 576- 589. Biological standards commission, world organization for Animal Health Paris, France. | ||||
Yang, W. L., Chen, Y. P., Cheng, Y. F., Li, X. H., Zhang, R. Q., Wen, C., & Zhou Y. M. (2016). An evaluation of zinc bearing palygorskite inclusion on the growth performance, mineral content, meat quality, and antioxidant status of broilers, Journal of Poultry Science, 95, 878-885. https://doi.org/10.3382/ps/pev445 |
||||
Yang, Z., Liu, Z. W., Allaker, R. P., Reip, P., Oxford, J., & Ahmad, Z. (2012). A review of nanoparticle functionality and toxicity on the central nervous system. Journal of Research Society Interface, 7, 411-422. https://doi.org/10.1098/rsif.2010.0158.focus |
||||
Yao, H. D., Wu, Q., Zhang, Z. W., Zhang, J. L., Li, S. & Huang, J. Q. (2013). Gene expression of endoplasmic reticulum resident selenoproteins correlates with apoptosis in various muscles of se-deficient chicks. Journal of Animal Nutrition, 5, 613-9. https://doi.org/10.3945/jn.112.172395 |
||||
Zhang, Z. W., Wang, Q. H., Zhang, J. L., Li, S., Wang, X. L., & Xu, S. W. (2012). Effect of oxidative stress on immunosuppression induced by selenium deficiency in chicks. Biological Trace Element Research, 149, 352- 361. https://doi.org/10.1007/s12011-012-9439-0 |