ISSN: 2536-7099
Model: Open Access/Peer Reviewed
DOI: 10.31248/JASVM
Start Year: 2016
Email: jasvm@integrityresjournals.org
https://doi.org/10.31248/JASVM2025.550 | Article Number: 7759A79710 | Vol.10 (2) - April 2025
Received Date: 19 March 2025 | Accepted Date: 29 April 2025 | Published Date: 30 April 2025
Authors: Abdulazeez Abubakar , Benjamin C. Onusiriuka , Abdullahi I. Alhaji and Godson Ofobuike Eze*
Keywords: trypanosomiasis., C. filiformis, ethanolic stem extract, T. congolense.
African trypanosomiasis is a parasitic infection caused by single-celled protozoan parasites of the genus Trypanosoma that is primarily transmitted by the bite of infected tsetse flies. This study aimed to investigate the antitrypanosomal effect of ethanolic stem extract of Cassytha filiformis on Trypanosoma congolense infection in albino mice. Crude extract of the plant was obtained by maceration in absolute ethanol, its phytochemical and acute toxicity studies were carried out following standard procedures. Thereafter, the antitrypanosomal effect of the extract was investigated in albino mice. Haematological, biochemical and histopathological changes in the experimental animals were assessed. Phytochemical screening revealed the presence of glycosides, tannins, terpenoids, alkaloids, flavonoids, and steroids. The extract of C. filiformis showed a mean lethal dose (LD50) >5000 mg/kg body weight. T. congolense savannah parasites used in this study showed a prepatent period of 96 hours. Lower doses of the extract (30 and 60 mg/kg body weight) produced better antitrypanosomal effects. Resistance of T. congolense parasite to standard trypanocide (Diminazine aceturate) was noted. The animal survival study showed that the higher the parasite load, the lower the survivability of the infected animals. Packed cell volume (PCV) of the treated groups showed a dose-dependent increase. The serum aspartate amino transferase (AST) activity was significantly (p<0.05) higher in groups 2, 3, 4, 5 and 6 compared to groups 1, 7 and 8 while alanine amino transferase (ALT) activities were significantly higher (P<0.05) in groups 3 and 4 compared to groups 1, 2, 7 and 8. The histopathological changes in the kidney and liver were moderate in the worst scenario. C. filiformis extract has significant potential as an antitrypanosomal agent due to its efficacy in reducing parasite load, improving survival rates, and showing manageable side effects.
Abubakar, A., Iliyasu, B., Yusuf, A. B., Igweh, A. C., Onyekwelu, N. A., Shamaki, B. U., Afolayan, D. O., & Ogbadoyi, E. O. (2005). Antitrypanosomal and haematological effects of selected Nigerian medicinal plants in Wistar rats. Biokemistri, 17(2), 95-99. https://doi.org/10.4314/biokem.v17i2.32593 |
||||
Adamu, A. A., Garba, F. N., Ahmed, T. M., & Abubakar, A. (2017). Pharmacognostic studies and elemental analysis of C. filiformis Linn. Journal of Pharmacognosy and Phytotherapy, 9, 131-137. https://doi.org/10.5897/JPP2017.0448 |
||||
Adonu, C. C., Enwa, F. O., Anie, C. O., Gugu, T., Esimone, C. O., & Attama, A. A. (2013). In vitro evaluation of the combined effects of methanol extracts from C. filiformis and Cleistopholis patens against Pseudomonas aeruginosa and Escherichia coli. International Journal of Advanced Research, 1(5), 152-158. | ||||
Alirol, E., Schrumpf, D., Amici Heradi, J., Riedel, A., de Patoul, C., Quere, M., & Chappuis, F. (2013). Nifurtimox-eflornithine combination therapy for second-stage gambiense human African trypanosomiasis: Médecins Sans Frontières experience in the Democratic Republic of the Congo. Clinical Infectious Diseases, 56, 195-203. https://doi.org/10.1093/cid/cis886 |
||||
Anchevida, S. E., Ramos-Zapata, J., Garruña-Hernández, R., & Parra-Tabla, V. (2024). Host preference and physiological performance of the invasive hemiparasite of coastal communities Cassytha filiformis L. (Lauraceae). Botanical Sciences, 1-17. https://doi.org/10.17129/botsci.3529 |
||||
Avwioro, O. G. (2002). Histochemistry and tissue pathology. Claverianum Press. | ||||
Barrett, M. P., Burchmore, R. J., Stich, A., Lazzari, J. O., Frasch, A. C., Cazzulo, J. J., and Krishna, S. (2003). The trypanosomiases. The Lancet, 362(9394), 1469-1480. https://doi.org/10.1016/S0140-6736(03)14694-6 |
||||
Bulus, T., Atawodi., S. E. and Mamman, M..(2011). Acute toxicity effect of the aqueous extract of Terminalia avicennioides on white albino rats. Science World Journal, 6 (2),1-4. | ||||
Burkill, H. M. (1995). The useful plants of West and Tropical Africa. Royal Botanic Gardens, Kew. Volume 3, pp. 39-41. | ||||
Büscher, P., Cecchi, G., Jamonneau, V., & Priotto, G. (2017). Human African trypanosomiasis. The Lancet, 390, 2397-2409. https://doi.org/10.1016/S0140-6736(17)31510-6 |
||||
Debabrata, D. (2018). Cassytha filiformis in forests of Jhargram district of West Bengal. GSC Biological and Pharmaceutical Sciences, 4,1-7. https://doi.org/10.30574/gscbps.2018.4.1.0023 |
||||
Delespaux, V., Dinka, H., Masumu, J., Van den Bossche, P., & Geerts, S. (2008). Five-fold increase in Trypanosoma congolense isolates resistant to diminazene aceturate over a seven-year period in Eastern Zambia. Drug Resistance Updates, 11(6), 205-209. https://doi.org/10.1016/j.drup.2008.10.002 |
||||
Desquesnes, M., Gonzatti, M., Sazmand, A., Thévenon, S., Bossard, G., Boulangé, A., Truc, P., Herder, S., Ravel, S., & Berthier, D. (2022). A review on the diagnosis of animal trypanosomoses. Parasites & Vectors, 15, 64. https://doi.org/10.1186/s13071-022-05190-1 |
||||
Eluu, S. C., Oko, A. O., Uduma, E. O., Eze, G. O., & Ngele, K. K. (2019). In vivo antimalarial screening of ethanolic extract of C. filiformis and its ameliorative effect on haematological and biochemical parameters altered in Plasmodium berghei-infected mice. IDOSR Journal of Biology, Chemistry and Pharmacy, 3(1), 5-15. | ||||
Evbuomwan, L., Chukwuka, E. P., Obazenu, E. I., & Ilevbare, L. (2018). Antibacterial activity of Vernonia amygdalina leaf extracts against multidrug resistant bacterial isolates. Journal of applied sciences and environmental management, 22(1), 17-21. https://doi.org/10.4314/jasem.v22i1.4 |
||||
Eze, G. O., Aimola, I. A., Ibrahim, Y. K. E., Ndidi, U. S., Mamman, M., & Ume, A. O. (2024). The impact of BMH-21 on parasite load, biochemical indices, ESAG6 and ITS-I genes of Trypanosoma brucei brucei-infected albino rats. Sumerianz Journal of Biotechnology, 7(4), 105-115. https://doi.org/10.47752/sjb.74.105.115 |
||||
Feyera, T., Terefe, G., & Shibeshi, W. (2014). Evaluation of in vivo antitrypanosomal activity of crude extracts of Artemisia abyssinica against Trypanosoma congolense isolate. BMC Complementary and Alternative Medicine, 14, 117. https://doi.org/10.1186/1472-6882-14-117 |
||||
Franco, J. R., Cecchi, G., Priotto, G., Paone, M., Diarra, A., Grout, L., Simarro, P. P., Zhao, W., & Argaw, D. (2020). Monitoring the elimination of human African trypanosomiasis at continental and country level: Update to 2018. PLOS Neglected Tropical Diseases, 14(5), e0008261. https://doi.org/10.1371/journal.pntd.0008261 |
||||
Furuhashi, T., Nakamura, T., Iwase, K. (2016). Analysis of metabolites in stem parasitic plant interactions: interaction of Cuscuta-Momordica versus Cassytha-Ipomoea. Plants, 5, 1-14. https://doi.org/10.3390/plants5040043 |
||||
Geerts, S., & Holmes, P. H. (1998). Drug management and parasite resistance in animal trypanosomiasis in Africa. Position Paper-ProgrammeAgainst African Trypanosomiasis (PAAT) Rome, Italy: FAO. p. 22. | ||||
Giordani, F., Morrison, L. J., Rowan, T. G., De Koning, H. P., & Barrett, M. P. (2016). The animal trypanosomiases and their chemotherapy: A review. Parasitology, 143(14), 1862-1889. https://doi.org/10.1017/S0031182016001268 |
||||
Hamill, L. C., Kaare, M. T., Welburn, S. C., & Picozzi, K. (2013). Domestic pigs as potential reservoirs of human and animal trypanosomiasis in Northern Tanzania. Parasites and Vectors, 6, 322. https://doi.org/10.1186/1756-3305-6-322 |
||||
Harborne, J. B. (1998). Phytochemical methods: A guide to modern techniques of plant analysis. Chapman and Hall, London. Pp. 49-188. | ||||
Herbert, W. J., & Lumsden, W. H. R. (1976). Trypanosoma brucei: a rapid "matching" method for estimating the host's parasitemia. Experimental parasitology, 40(3), 427-431. https://doi.org/10.1016/0014-4894(76)90110-7 |
||||
Hoet, S., Stévigny, C., Block, S., Opperdoes, F., Colson, P., Baldeyrou, B., Lansiaux A., Baily, C., & Quetin-Leclercq, J. (2004). Alkaloids from Cassytha filiformis and related aporphines: antitrypanosomal activity, cytotoxicity, and interaction with DNA and topoisomerases. Planta medica, 70(05), 407-413. https://doi.org/10.1055/s-2004-818967 |
||||
Jaiswal, A., Panda, A., Kumar, S., & Mishra, S. (2021). Medicinal parasitic plants of Odisha. In: Medico-Biowealth of India, Volume 3. Ambika Prasad Research Foundation, Odisha, India. | ||||
John, W. H., Rachid, O., Damian, K., Glyn, A. V., & Stephen, J. T. (2012). Modeling the control of trypanosomiasis using trypanocides or insecticide-treated livestock. PLOS Neglected Tropical Diseases, 6(5), e1615. https://doi.org/10.1371/journal.pntd.0001615 |
||||
Lawal, B., Shittu, O. K., Inje, O. F., Berinyuy, E. B., & Muhammed, H. (2016). Potential antioxidants and hepatoprotectives from African natural products: A review. Clinical Phytoscience, 2, 23. https://doi.org/10.1186/s40816-016-0037-0 |
||||
Legros, D., Ollivier, G., Gastellu-Etchegorry, M., Paquet, C., Burri, C., Jannin, J., & Buscher, P. (2002). Treatment of human African trypanosomiasis: Present situation and needs for research and development. The Lancet Infectious Diseases, 2(8), 437-440. https://doi.org/10.1016/S1473-3099(02)00321-3 |
||||
Lorke, D. (1983). A new approach to practical acute toxicity testing. Archives of Toxicology, 54, 275-287. https://doi.org/10.1007/BF01234480 |
||||
Mbaya, A. W., & Ibrahim, U. I. (2011). In vivo and in vitro avtivities of medicinal plants on haemic and humoral trypanosomes: A review. International Journal of Pharmacology, 7(1), 1-11. https://doi.org/10.3923/ijp.2011.1.11 |
||||
Mbaya, A. W., Ibrahim, U. I., God, O. T., & Ladi, S. (2010). Toxicity and potential anti-trypanosomal activity of ethanolic extract of Azadirachta indica (Maliacea) stem bark: An in vivo and in vitro approach using Trypanosoma brucei. Journal of ethnopharmacology, 128(2), 495-500. https://doi.org/10.1016/j.jep.2010.01.013 |
||||
Mythili, S., Sathiavelu, A., Sridharan, T. B. (2011). Antimicrobial activity of selected Indian folk medicinal plants. Journal of Pharmacy Research, 4(6),1894-1898. | ||||
Nelson, S. C. (2008). Cassytha filiformis. Plant Disease, 42, 1-10. Retrieved from www.ctahr.hawaii.edu/oc/freepubs/pdf/PD-42.pdf | ||||
Priotto, G., Kasparian, S., Mutombo, W., Ngouama, D., Ghorashian, S., Arnold, U., Ghabri, S., Baudin, E., Buard, V., Kazadi-Kyanza, S., & Kande, V. (2009). Nifurtimox-eflornithine combination therapy for second-stage African Trypanosoma brucei gambiense trypanosomiasis: a multicentre, randomised, Rosli, R., Tennakoon, K. U., Yaakub, M. Y. S. M., Zainal Ariffin N. A. H. and Metali, F. (2024). Host selectivity and distribution of Cassytha filiformis in the Coastal Bornean Heath Forests. Tropical Life Sciences Research, 35(2),1-29. | ||||
Salim, B., Bakheit, M. A., Salih, S. E., El-Dakhly, K. M., El-Hariri, M., & Al-Amin, M. A. (2011). An outbreak of bovine trypanosomiasis in the Blue Nile State, Sudan. Parasites and Vectors, 4(1), 2-6. https://doi.org/10.1186/1756-3305-4-74 |
||||
Sharma, S., Hullatti, K. K., Prasanna, S. M., Kuppast, I. J., & Sharma, P. (2009). Pharmacognosy Research, 1, 327-330. | ||||
World Health Organization (2013). Control and surveillance of human African trypanosomiasis. | ||||
World Health Organization (2020). Ending the neglect to attain the sustainable development goals: A road map for neglected tropical diseases 2021-2030. Geneva, Switzerland. https://www.who.int/neglected_diseases/Revised-DraftNTD-Roadmap-23Apr2020.pdf | ||||
Zhang, H., Florentine, S., & Tennakoon, K. U. (2022). The angiosperm stem hemiparasitic genus Cassytha (Lauraceae) and its host interactions: a review. Frontiers in Plants Science, 13, 864110. https://doi.org/10.3389/fpls.2022.864110 |