ISSN: 2536-7099
Model: Open Access/Peer Reviewed
DOI: 10.31248/JASVM
Start Year: 2016
Email: jasvm@integrityresjournals.org
https://doi.org/10.31248/JASVM2021.294 | Article Number: 3D64A7593 | Vol.6 (5) - October 2021
Received Date: 22 September 2021 | Accepted Date: 13 October 2021 | Published Date: 30 October 2021
Authors: Rogers Azabo* , Mecky Matee and Sharadhuli Kimera
Keywords: monitoring, Antimicrobial resistance, antimicrobial use, AWaRe categorization, critically important antimicrobial, quantities.
Monitoring antimicrobial use in food-producing animals is one of the global strategies to tackle antimicrobial resistance. The purpose of the present study is to generate quantitative information on antimicrobial use pattern in Dar es Salaam, which will be used as an approach for future monitoring and surveillance of antimicrobial quantities consumed in food animals. A 3 years (2016-2018) retrospective survey of antimicrobial usage in food-producing animals in three selected districts of Dar es Salaam city, Eastern Tanzania was conducted. Data on antimicrobial quantities consumed was obtained from five purposively selected licensed veterinary pharmaceutical sales/outlet establishments in the study area, based on keeping detailed sales records for the study period. Data analysis was done using IBM SPSS version 20. Animal population data were from FAO-Stat database used to extrapolate the quantity consumed in food animals to the entire population during the study period in Tanzania. The antimicrobials were analysed based on class, importance for human medicine and route of administration. The study revealed that 178.4 tonnes of antimicrobials (by weight of active ingredients) were consumed during the 3 years period, with an average of 59.5 ± 3.8 tonnes/year. The commonly consumed antimicrobials were tetracycline (44.4%), sulphonamides (20.3%), aminoglycosides (10.3%) and beta-lactams (7.4%). In relation to veterinary antimicrobial use importance to human medicine, 34.4% were of critically important antimicrobials; 4.1% reserve and 51% watch group according to AWaRe categorization of WHO. Most of the antimicrobials were administered orally. Overall, a mean of 7.44 ± 0.81 mg/PCU (population correction unit) was consumed by food-producing animals during the 3 years period. This finding can help improve monitoring and control of veterinary antimicrobial use in Dar es Salaam in particular and Tanzania in general by preserving the efficacy of antimicrobials for future animal and human generations.
Abdellah, C., Fouzia, R. F., Abdelkader, C., Rachida, S. B., & Mouloud, Z. (2009). Prevalence and antimicrobial susceptibility of Salmonella isolates from chicken carcasses and giblets in Meknés, Morocco. African Journal of Microbiology Research, 3(5), 215-219. | ||||
Acar, J., & Rostel, B. (2001). Antimicrobial resistance: an overview. Revue Scientifique et Technique-Office International des Epizooties, 20(3), 797-810. Crossref |
||||
Adesokan, H. K., Akanbi, I. M., Akanbi, I. O., & Obaweda, R. A. (2015). Pattern of antimicrobial usage in livestock animals in south-western Nigeria: The need for alternative plans. Onderstepoort Journal of Veterinary Research, 82(1), 1-6. Crossref |
||||
BelVet-SAC (2019). Belgium Veterinary Surveillance of Antimicrobial Consumption: National Consumption Report. Retrieved 21 February 2021 from https://belvetsac.ugent.be/BelvetSac_report_2019.pdf. | ||||
Callens, B., Persoons, D., Maes, D., Laanen, M., Postma, M., Boyen, F., Haesebrouck, F., Butaye, P., Catry, B., & Dewulf, J. (2012). Prophylactic and metaphylactic antimicrobial use in Belgian fattening pig herds. Preventive Veterinary Medicine, 106(1), 53-62. Crossref |
||||
Carrique-Mas, J. J., Choisy, M., Van Cuong, N., Thwaites, G., & Baker, S. (2020). An estimation of total antimicrobial usage in humans and animals in Vietnam. Antimicrobial Resistance & Infection Control, 9, Article number 16. Crossref |
||||
Caudell, M. A., Quinlan, M. B., Subbiah, M., Call, D. R., Roulette, C. J., Roulette, J. W., Roth, A., Matthews, L., & Quinlan, R. J. (2017). Antimicrobial use and veterinary care among agro-pastoralists in Northern Tanzania. PloS one, 12(1), e0170328. Crossref |
||||
Chinchilla, G. F., & Rodriguez, C. (2017) Tetracyclines in food and feeding stuffs: from regulation to analytical methods, bacterial resistance, and environmental and health implications. Journal of Analytical Methods in Chemistry, Volume 2017, Article ID 1315497, 24 pages. Crossref |
||||
Eagar, H., Swan, G., & Van Vuuren, M. (2012). A survey of antimicrobial usage in animals in South Africa with specific reference to food animals. Journal of the South African Veterinary Association, 83(1), Article number 16. Crossref |
||||
European Medicines Agency (EMA) (2018). European Surveillance of Veterinary Antimicrobial Consumption (ESVAC). Sales of veterinary antimicrobial agents in 30 European countries in 2016. Eighth ESVAC report. Amsterdam. | ||||
Food and Agriculture Organization of the United Nations (FAO) (2021). Live animals in the United Republic of Tanzania: Stocks. Retrieved 10 January 2021 from http://www.fao.org/faostat/en/#data/QA. | ||||
Góchez, D., Raicek, M., Pinto Ferreira, J., Jeannin, M., Moulin, G., & Erlacher-Vindel, E. (2019). OIE annual report on anti-microbial agents intended for use in animals: Methods used. Frontiers in Veterinary Science, 6, 317. Crossref |
||||
Grave, K., Greko, C., Kvaale, M. K., Torren-Edo, J., Mackay, D., Muller, A., & Moulin, G. (2012). Sales of veterinary antibacterial agents in nine European countries during 2005-09: Trends and patterns. Journal of Antimicrobial Chemotherapy, 67(12), 3001-3008. Crossref |
||||
Harada, K., Asai, T., Kojima, A., Oda, C., Ishihara, K., & Takahashi, T. (2005). Antimicrobial susceptibility of pathogenic Escherichia coli isolated from sick cattle and pigs in Japan. Journal of Veterinary Medical Science, 67(10), 999-1003. Crossref |
||||
Hosoi, Y., Asai, T., Koike, R., Tsuyuki, M., & Sugiura, K. (2013). Use of veterinary antimicrobial agents from 2005 to 2010 in Japan. International Journal of Antimicrobial Agents, 41(5), 489-490. Crossref |
||||
Hounmanou, Y. M. G., & Mdegela, R. H. (2017). Current situation for antimicrobial use, antimicrobial resistance and antimicrobial residues in the food and agriculture sectors in Tanzania: A review. Tanzania Veterinary Association Proceedings, 35, 58-62. | ||||
Hsia, Y., Lee, B. R., Versporten, A., Yang, Y., Bielicki, J., Jackson, C., Newland, J., Goossens, H., Magrini, N., Sharland, M., & Dedeic-Ljubovic, A. (2019). Use of the WHO Access, Watch, and Reserve classification to define patterns of hospital antibiotic use (AWaRe): an analysis of paediatric survey data from 56 countries. The Lancet Global Health, 7(7), e861-e871. Crossref |
||||
IBM Corp (Released 2011). IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY: IBM Corp. | ||||
Karimuribo, E. D., Mdegela, R. H., Kusiluka, L. J. M., & Kambarage, D. M. (2005). Assessment of drug usage and antimicrobial residues in milk on smallholder farms in Morogoro, Tanzania. Bulletin of Animal Health and Production in Africa, 53(4), 234-241. Crossref |
||||
Kashoma, I. P., Kassem, I. I., Kumar, A., Kessy, B. M., Gebreyes, W., Kazwala, R. R., & Rajashekara, G. (2015). Antimicrobial resistance and genotypic diversity of Campylobacter isolated from pigs, dairy, and beef cattle in Tanzania. Frontiers in Microbiology, 6, 1240. Crossref |
||||
Kawagoe, K., Mine, H., Asai, T., Kojima, A., Ishihara, K., Harada, K., Ozawa, M., Izumiya, H., Terajima, J., Watanabe, H., Honda, E., Takahashi, T., & Sameshima, T. (2007). Changes of multi-drug resistance pattern in Salmonella enterica subspecies enterica serovar Typhimurium isolates from food-producing animals in Japan. Journal of Veterinary Medical Science, 69(11), 1211-1213. Crossref |
||||
Kimbi, E., Lekule, F., Mlangwa, J., Mejer, H., & Thamsborg, S. (2015). Smallholder pigs production systems in Tanzania. Journal of Agricultural Science and Technology, A, 5(1), 47-60. Crossref |
||||
Kimera, Z. I., Mdegela, R. H., Mhaiki, C. J., Karimuribo, E. D., Mabiki, F., Nonga, H. E., & Mwesongo, J. (2015). Determination of oxytetracycline residues in cattle meat marketed in the Kilosa district, Tanzania: research communication. Onderstepoort Journal of Veterinary Research, 82(1), 1-5. Crossref |
||||
Kimera, Z. I., Mshana, S. E., Rweyemamu, M. M., Mboera, L. E., & Matee, M. I. (2020). Antimicrobial use and resistance in food-producing animals and the environment: An African perspective. Antimicrobial Resistance and Infection Control, 9, Article number 37. Crossref |
||||
Lhermie, G., Gröhn, Y. T., & Raboisson, D. (2017). Addressing antimicrobial resistance: an overview of priority actions to prevent suboptimal antimicrobial use in food-animal production. Frontiers in Microbiology, 7, 2114. Crossref |
||||
Mather, A. E., Mathews, L., Mellor, D. J., Reeve, R., Denwood, M. J., Boerlin, P., Reid-Smith, R. J., Brown, D. J., Coia, J. E., Browning, L. M., Haydon, D. T., & Reid, S. W. J. (2012). 'An ecological approach to assessing the epidemiology of antimicrobial resistance in animal and human populations', Proceedings of the Royal Society B, 279, 1630-1639. Crossref |
||||
Michael, S., Mbwambo, N., Mruttu, H., Dotto, M., Ndomba, C., da Silva, M., Makusaro, F., Nandonde, S., Crispin, J., & Shapiro, B. (2018a). Tanzania livestock sector analysis (2016/2017-2031/2032). Retrieved from https://hdl.handle.net/10568/ 100527. | ||||
Michael, S., Mbwambo, N., Mruttu, H., Dotto, M., Ndomba, C., da Silva, M., Makusaro, F., Nandonde, S., Crispin, J., Shapiro, B., Desta, S., Nigussie, K., Negassa, A. & Gebru, G. (2018b). Tanzania livestock master plan. Link |
||||
Ministry of Health Community Development Gender Elderly and Children (MoHCDGEC) (2017). The national action plan on anti-microbial resistance 2017 - 2022. The United Republic of Tanzania. | ||||
Mitema, E. S., Kikuvi, G. M., Wegener, H. C., & Stohr, K. (2001). An assessment of antimicrobial consumption in food producing animals in Kenya. Journal of Veterinary Pharmacology and Therapeutics, 24(6), 385-390. Crossref |
||||
Mouiche, M. M. M., Moffo, F., Betsama, J. D. B., Mapiefou, N. P., Mbah, C. K., Mpouam, S. E., Penda, R. E., Ciake, S. A. C., Feussom, J. M. K., Kamnga, Z. F., & Awah-Ndukum, J. (2020). Challenges of antimicrobial consumption surveillance in food-producing animals in sub-Saharan African countries: Patterns of antimicrobials imported in Cameroon from 2014 to 2019. Journal of Global Antimicrobial Resistance, 22, 771-778. Crossref |
||||
National Food Institute; Statens Serum Institute (DANMAP 2019). The Danish approach to surveillance of the use of antimicrobial agents and the occurrence of antimicrobial resistance in bacteria from food animals, food and humans in Denmark. Link |
||||
Nonga, H. E., Mariki, M., Karimuribo, E. D., & Mdegela, R. H. (2009). Assessment of antimicrobial usage and antimicrobial residues in broiler chickens in Morogoro Municipality, Tanzania. Pakistan Journal of Nutrition, 8(3), 203-207. Crossref |
||||
O'Neill, J. (2016). Tackling drug-resistant infections globally: Final report and recommendations. Government of the United Kingdom: London, UK. | ||||
Prescott, J. F. (2000). Tetracyclines. In: Prescott, J. F., Baggot, J. D., Walker, R. D. (eds.). Antimicrobial therapy in veterinary therapy, 3rd edition Ames: Iowa State University Press. Pp. 215-289. | ||||
Rugumisa, B., Call, D., Mwanyika, G., Subbiah, M., & Buza, J. (2016). Comparison of the prevalence of antibiotic-resistant Escherichia coli isolates from commercial-layer and free-range chickens in Arusha district, Tanzania. African Journal of Microbiology Research, 10(34), 1422-1429. Crossref |
||||
Simoneit, C., Burow, E., Tenhagen, B. A., & Käsbohrer, A. (2015). Oral administration of antimicrobials increase antimicrobial resistance in E. coli from chicken-a systematic review. Preventive veterinary medicine, 118(1), 1-7. Crossref |
||||
South African National Veterinary Surveillance and Monitoring Programme for Resistance to Antimicrobial Drugs (SANVAD) (2007). University of Pretoria and ARC-Onderstepoort Veterinary Institute. Pretoria, ISBN: 978-1-86854-673-2. | ||||
Ström, G., Halje, M., Karlsson, D., Jiwakanon, J., Pringle, M., Fernström, L. L., & Magnusson, U. (2017). Antimicrobial use and antimicrobial susceptibility in Escherichia coli on small-and medium-scale pig farms in north-eastern Thailand. Antimicrobial Resistance and Infection Control, 6, Article number 75. Crossref |
||||
Ting, S., Pereira, A., Alves, A. D. J., Fernandes, S., Soares, C. D. C., Soares, F. J., Henrique, O. D. C., Davis, S., Yan, J., Francis, J. R., & Jong, J. B. D. C. (2021). Antimicrobial Use in Animals in Timor-Leste Based on Veterinary Antimicrobial Imports between 2016 and 2019. Antibiotics, 10(4), 426. Crossref |
||||
Tiseo, K., Huber, L., Gilbert, M., Robinson, T. P., & Van Boeckel, T. P. (2020). Global trends in antimicrobial use in food animals from 2017 to 2030. Antibiotics, 9(12), 918. Crossref |
||||
Tollefson, L., Angulo, F. J., & Fedorka-Cray, P. J. (1998). National surveillance for antibiotic resistance in zoonotic enteric pathogens. Veterinary Clinics of North America: Food Animal Practice, 14(1), 141-150. Crossref |
||||
Tsutsui, A., Yahara, K., & Shibayama, K. (2018). Trends and patterns of national antimicrobial consumption in Japan from 2004 to 2016. Journal of Infection and Chemotherapy, 24(6), 414-421. Crossref |
||||
Tufa, T. B., Gurmu, F., Beyi, A. F., Hogeveen, H., Beyene, T. J., Ayana, D., Woldemariyam, F. T., Hailemariam, E., Gutema, F. D., & Stegeman, J. A. (2018). Veterinary medicinal product usage among food animal producers and its health implications in Central Ethiopia. BMC veterinary research, 14, Article number 409. Crossref |
||||
Van Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S. A., Robinson, T. P., Teillant, A., & Laxminarayan, R. (2015). Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences, 112(18), 5649-5654. Crossref |
||||
Van Boeckel, T.P., Pires, J., Silvester, R., Zhao, C., Song, J., Criscuolo, N.G., Gilbert, M., Bonhoeffer, S., & Laxminarayan, R. (2019). Global trends in antimicrobial resistance in animals in low- and middle-income countries. Science, 365, 1944. Crossref |
||||
Werner, N., McEwen, S., & Kreienbrock, L. (2018). Monitoring antimicrobial drug usage in animals: methods and applications. In: Antimicrobial Resistance in Bacteria from Livestock and Companion Animals, Pp. 569-594. Crossref |
||||
Wilson, R. T., & Swai, E. S. (2014). Pig Production in Tanzania: A critical review. Tropicultura, 32(1), 46-53. | ||||
World Health Organization (WHO) (2012). Collaborating Centre for Drug Statistics Methodology. ATCvet. Link |
||||
World Health Organization (WHO) (2015). Global action plan on antimicrobial resistance. World Health Organization: Geneva, Switzerland. | ||||
World Health Organization (WHO) (2017). Integrated surveillance of antimicrobial resistance in food borne bacteria: application of a one health approach. Link |
||||
World Health Organization (WHO) (2018a). Critically important antimicrobials for human medicine: ranking of medically important antimicrobials for risk management of antimicrobial resistance due to non-human use. 6th revision. Link |
||||
World Health Organization (WHO) (2018b). Global antimicrobial resistance surveillance system (GLASS) report: early implementation 2016-2017. Link |
||||
World Health Organization (WHO) (2019). WHO releases the 2019 AWaRe classification antibiotics. Link |
||||
World Health Organization, Food and Agriculture Organization of the United Nations & World Organisation for Animal Health (WHO/FAO/OIE) (2021). Monitoring global progress on antimicrobial resistance: tripartite AMR country self-assessment survey (TrACSS) 2019-2020: global analysis report. World Health Organization. Link |
||||
World Organisation for Animal Health (OIE) (2021). Monitoring of the quantities and usage patterns of antimicrobial agents used in food-producing animals (Chapter 6.9). In: Terrestrial animal health code. Link |
||||
World Organization for Animal Health (OIE) (2017). Annual report on antimicrobial agents intended for the use in animals: better understanding of the global situation Second Report. Paris. | ||||
World Organization for Animal Health (OIE) (2020). Annual report on antimicrobial agents intended for use in animals: better understanding of the global situation. Fourth Report. Paris. |