GLOBAL JOURNAL OF EARTH AND ENVIRONMENTAL SCIENCE
Integrity Research Journals

ISSN: 2636-6002
Model: Open Access/Peer Reviewed
DOI: 10.31248/GJEES
Start Year: 2016
Email: gjees@integrityresjournals.org


Spatial estimation of particulate matter (PM2.5) in selected African cities using machine learning-based models for improved air quality assessment

https://doi.org/10.31248/GJEES2024.191   |   Article Number: 43BCF7831   |   Vol.10 (4) - August 2025

Received Date: 15 April 2025   |   Accepted Date: 19 July 2025  |   Published Date: 30 August 2025

Authors:  Kaothar Ayomide ABUDULAWAL* and Ismaheel Olajide BELLO

Keywords: Environmental sustainability, machine learning, particulate matter, environmental health, Air quality management, Sub-Saharan Africa.

Nine (9) out of ten (10) people around the world breathe air that does not meet WHO’s recommended air quality standards. This study aims to create an accurate and scalable machine learning model using satellite-derived Aerosol Optical Depth (AOD) data, temporal and seasonal derived features to estimate Particulate Matter (PM2.5) levels, enhance air quality monitoring and inform interventions for public health and environmental sustainability. The geographical locations considered in this study include Lagos (Nigeria), Bujumbura (Burundi), Nairobi (Kenya), and Kampala (Uganda). Predictive Regression models used in this study are XGBoost, LightGBM, Ridge, Polynomial, and Feedforward Neural Network (FNN). XGBoost emerged as the best-performing model, which achieves an RMSE of 12.01 µg/m³ and an R² of 0.76. Spatial analysis using Local Indicators of Spatial Association (LISA) and Global Moran’s I statistic revealed varying degrees of spatial clustering of PM2.5 concentrations across the cities. Lagos, which exhibits the strongest positive spatial autocorrelation with Moran’s I statistic of 0.686 and Nairobi the weakest with Moran’s I statistic of 0.046. This study shows the effectiveness of combining satellite AOD data with temporal and seasonal variables in enhancing the predictive accuracy of PM2.5 estimation models. It provides critical insights for air quality management and highlights the importance of spatially informed models. This is important to identify localised pollution hotspots for more effective environmental health interventions.

Jia, H., Zang, S., Zhang, L., Yakovleva, E., Sun, H., & Sun, L. (2023). Spatiotemporal characteristics and socioeconomic factors of PM2.5 heterogeneity in mainland China during the COVID-19 epidemic. Chemosphere, 331, 138785.
https://doi.org/10.1016/j.chemosphere.2023.138785
 
Locke, A. V., Heffernan, R. C., McDonagh, G., Yassa, J., & Flaherty, G. T. (2022). Clearing the air: a global health perspective on air pollution. International Journal of Travel Medicine and Global Health, 10(2), 46-49.
https://doi.org/10.34172/ijtmgh.2022.09
 
Moursi, A. S. A. E. A., Shouman, M., Hemdan, E. E., & El-Fishawy, N. (2019). PM2.5 Concentration Prediction for Air Pollution using Machine Learning Algorithms. Menoufia Journal of Electronic Engineering Research, 28(1), 349-354.
https://doi.org/10.21608/mjeer.2019.67375
 
Musa, M., Rahman, P., Saha, S. K., Chen, Z., Ali, M. A. S., & Gao, Y. (2024). Cross-sectional analysis of socioeconomic drivers of PM2.5 pollution in emerging SAARC economies. Scientific Reports, 14(1), 16357.
https://doi.org/10.1038/s41598-024-67199-z
 
National Oceanic and Atmospheric Administration (NOAA), United State Department of Commerce (2025). State of the Science FACT SHEET Air Quality. Retrieved 7th July, 2025 from https://councilonstrategicrisks.org/wp-content/uploads/ 2025/03/NOAA-State-of-the-Science-Fact-Sheet-Air-Quality-January-2025.pdf.
 
Nguyen, A. T., Pham, D. H., Oo, B. L., Ahn, Y., & Lim, B. T. H. (2024). Predicting air quality index using attention hybrid deep learning and quantum-inspired particle swarm optimization. Journal of Big Data, 11(1), 71.
https://doi.org/10.1186/s40537-024-00926-5
 
Panaite, F. A., Rus, C., Leba, M., Ionica, A. C., & Windisch, M. (2024). Enhancing air-quality predictions on university campuses: A machine-learning approach to PM2.5 forecasting at the University of Petroșani. Sustainability, 16(17), 7854.
https://doi.org/10.3390/su16177854
 
Parra, J. C., Gómez, M., Salas, H. D., Botero, B. A., Piñeros, J. G., Tavera, J., & Velásquez, M. P. (2024). Linking meteorological variables and particulate matter PM2.5 in the Aburrá Valley, Colombia. Sustainability, 16(23), 10250.
https://doi.org/10.3390/su162310250
 
Patel, P., Patel, S., Shah, K., Desai, K., Patel, S., Shah, M., & Patel, S. (2025). A systematic study on PM2.5 and PM10 concentration prediction in air pollution using machine learning and deep learning model. Environmental Chemistry and Ecotoxicology, 7, 1401-1415.
https://doi.org/10.1016/j.enceco.2025.07.001
 
United States Environmental Protection Agency (EPA) (2024). National Ambient Air Quality Standards (NAAQS) for Particle Pollution. Retrieved from https://www.orcaa.org/epa-updates-particulate-pollution-standards/
 
Wang, J., Han, J., Li, T., Wu, T., & Fang, C. (2023). Impact analysis of meteorological variables on PM2.5 pollution in the most polluted cities in China. Heliyon, 9(7), e17609.
https://doi.org/10.1016/j.heliyon.2023.e17609
 
World Health Organization (WHO) (2021). Air Pollution. Retrieved 7th July, 2025 from https://www.who.int/health-topics/air-pollution#tab=tab_1.
 
Zaman, N. A. F. K., Kanniah, K. D., Kaskaoutis, D. G., & Latif, M. T. (2021). Evaluation of machine learning models for estimating PM2.5 concentrations across Malaysia. Applied Sciences, 11(16), 7326.
https://doi.org/10.3390/app11167326
 
Zhang, D., Du, L., Wang, W., Zhu, Q., Bi, J., Scovronick, N., Naidoo, M., Garland, R. M., & Liu, Y. (2021). A machine learning model to estimate ambient PM2.5 concentrations in industrialized highveld region of South Africa. Remote Sensing of Environment, 266, 112713.
https://doi.org/10.1016/j.rse.2021.112713
 
Zindi AirQo (2024). Africa Air Quality Competition Dataset. Retrieved 10th July 2024 from https://zindi.africa/competitions/ airqo-african-air-quality-prediction-challenge.