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ABSTRACT: Nine (9) out of ten (10) people around the world breathe air that does not meet WHO’s recommended air 
quality standards. This study aims to create an accurate and scalable machine learning model using satellite-derived 
Aerosol Optical Depth (AOD) data, temporal and seasonal derived features to estimate Particulate Matter (PM2.5) levels, 
enhance air quality monitoring and inform interventions for public health and environmental sustainability. The 
geographical locations considered in this study include Lagos (Nigeria), Bujumbura (Burundi), Nairobi (Kenya), and 
Kampala (Uganda). Predictive Regression models used in this study are XGBoost, LightGBM, Ridge, Polynomial, and 
Feedforward Neural Network (FNN). XGBoost emerged as the best-performing model, which achieves an RMSE of 12.01 
µg/m³ and an R² of 0.76. Spatial analysis using Local Indicators of Spatial Association (LISA) and Global Moran’s I statistic 
revealed varying degrees of spatial clustering of PM2.5 concentrations across the cities. Lagos, which exhibits the 
strongest positive spatial autocorrelation with Moran’s I statistic of 0.686 and Nairobi the weakest with Moran’s I statistic  
of 0.046. This study shows the effectiveness of combining satellite AOD data with temporal and seasonal variables in 
enhancing the predictive accuracy of PM2.5 estimation models. It provides critical insights for air quality management and 
highlights the importance of spatially informed models. This is important to identify localised pollution hotspots for more 
effective environmental health interventions. 
 
Keywords: Air quality management, environmental health, environmental sustainability, machine learning, particulate 
matter, Sub-Saharan Africa.
 
 
INTRODUCTION 
 
Air pollution is mainly caused by a variety of human and 
natural activities, such as the burning of fossil fuels for 
energy and transportation, industrial emissions and 
agricultural activities that release harmful substances into 
the atmosphere. According to Nguyen et al. (2024), air 
pollution is the introduction of hazardous or excessive 
levels of substances like gases, particles, and biological 
molecules into the Earth’s atmosphere. This is detrimental 
to our health and poses a serious environmental and public 
health concern.  

Air pollutants such as ground-level ozone and PM2.5, 
according to the National Oceanic and Atmospheric 
Administration (2025) have been observed to be 

influenced by climate change and the cause of respiratory 
and cardiovascular ailments. One (1) in (8) deaths is 
recorded globally per year, and this has been attributed to 
air pollution (Locke et al., 2022), with an estimated 4.2 
million people dying annually from exposure to outdoor air 
pollution (World Health Organisation, 2021). The 
detrimental effects of air pollutants emphasise the need for 
effective monitoring and prediction mechanisms, 
particularly in densely populated areas (Panaite et al, 
2024).  

Unfortunately, despite the variety of in-depth studies on 
air-quality assessment in developed cities, there is 
presently little or no study that has assessed the air quality  
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estimation of more than one city or country at the same 
time in Africa. Recent urban studies do not provide insights 
into the air quality assessment of the studied regions: 
Lagos in Nigeria, Bujumbura in Burundi, Kampala in 
Uganda and Nairobi in Kenya. This research, therefore, 
aims to bridge the gap in air quality assessment in sub-
Saharan African cities by predicting the air quality of the 
study areas and providing a robust solution for estimating 
PM2.5 levels across these regions, which is a major 
source of concern for public health among various 
pollutants. Hence, this study is unique for its focus on 
African urban areas and its inclusion of satellite-derived 
AOD data, thus offering both novelty and significance. This 
research, therefore, attempts to develop predictive models 
specifically for these cities, which are crucial for mitigating 
air pollution and improving air quality in sub-Saharan 
Africa. 

This study is expected to enhance the understanding 
and application of air-quality assessment estimation, 
mitigation of air pollution, and preparation for future trends, 
given our predicted air quality models for the study areas. 

Furthermore, this work reinforces the initial different 
initiatives to mitigate environmental challenges, most 
especially improving air quality, thereby providing useful 
findings applicable to similar settings in Africa. Also, it adds 
to the body of knowledge by focusing more in-depth on air 
quality improvements within unique settings of sub-
Saharan Africa. This will serve as a practical tool for 
academia, policymakers, government, and stakeholders to 
ensure and improve sustainable development in those 
regions and beyond. 
 
 
MATERIALS AND METHODS 
 
Data and material description 
 
The data used in this research was obtained from a public 
data science competition hosted on Zindi Africa by AirQo 
(2024). The dataset is Sentinel-5p data extracted from 
Google Earth Engine. The dataset consists of 
observations from four cities in four African Countries. This 
dataset contains 80 feature variables that cover various 
aspects, including Location and Time Features, Pollutant 
Measurements and Atmospheric Features, Carbon 
Monoxide (CO) variables, Nitrogen Dioxide (NO₂) 

variables, Formaldehyde (HCHO) variables, Ozone (O₃) 
variables, and Aerosol and Cloud variables. In total, the 
data contains 8071 observations covering the period from 
the 1st of January 2023 to the 26th of February 2024. 
 
 
Methods 
 
This research leverages Statistical models, Machine 
Learning models, and Deep learning models to determine 
the approach that best performs in estimating the value of  
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PM2.5. It is believed that this can help reduce 
environmental health risks in the regions of Africa. The 
statistical methods employed include Ridge regression 
and Polynomial Ridge regression. The machine learning 
models employed are XGBoost and LightGBM, while a 
Feedforward Neural Network was employed for deep 
learning techniques. 
 
 
Data preprocessing 
 
The data preprocessing started from the inspection of 
missing values within the variables. Upon inspection, it 
was observed that some variables have missing values up 
to 94% of the total sample. Variables with missing values 
of more than 40% of the total sample were dropped from 
the data. Also, variables like id and site id were also 
dropped, after which the total number of variables 
decreased from 80 to 35. Then, the dataset was partitioned 
into train and test datasets using a ratio of 80:20, 
respectively. Stratified sampling was employed for the 
partitioning, with the site ID variable used as the 
stratification criterion. After partitioning, the missing values 
for each variable in both the train and test sets were 
replaced using the mean imputation method derived from 
the Train set. To evaluate the performance of the models, 
several metrics were used, including R-squared Goodness 
of Fit, Adjusted R-squared, Mean Absolute Error (MAE), 
and Root Mean Squared Error (RMSE). 
 
 
Feature engineering 
 
To enhance model performance and capture underlying 
patterns in the datasets, several feature engineering 
strategies were implemented, which include Cyclical 
Encoding of temporal features, Derived Cloud Features, 
and Interaction terms. 
 
The temporal features were derived as follows: 
 

ℎ𝑜𝑢𝑟_ sin = sin (
2𝜋 ∗ ℎ𝑜𝑢𝑟

24
) , ℎ𝑜𝑢𝑟_ cos = cos (

2𝜋 ∗ ℎ𝑜𝑢𝑟

24
) 

 

𝑚𝑜𝑛𝑡ℎ_ sin = sin (
2𝜋 ∗ 𝑚𝑜𝑛𝑡ℎ

12
) , 𝑚𝑜𝑛𝑡ℎ_ cos = cos (

2𝜋 ∗ 𝑚𝑜𝑛𝑡ℎ

12
) 

 

𝑖𝑠_𝑤𝑒𝑒𝑘𝑒𝑛𝑑 = {
1, 𝑖𝑓 𝑑𝑎𝑦 𝑖𝑠 𝑠𝑎𝑡𝑢𝑟𝑑𝑎𝑦 𝑜𝑟 𝑠𝑢𝑛𝑑𝑎𝑦
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 
The additional Cloud features which were derived are: 
 
𝑐𝑙𝑜𝑢𝑑_ℎ𝑒𝑖𝑔ℎ𝑡_𝑑𝑖𝑓𝑓 =  𝑐𝑙𝑜𝑢𝑑_𝑡𝑜𝑝_ℎ𝑒𝑖𝑔ℎ𝑡 − 𝑐𝑙𝑜𝑢𝑑_𝑏𝑎𝑠𝑒_ℎ𝑒𝑖𝑔ℎ𝑡 
 
𝑐𝑙𝑜𝑢𝑑_𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒_𝑑𝑖𝑓𝑓 =  𝑐𝑙𝑜𝑢𝑑_𝑡𝑜𝑝_𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 − 𝑐𝑙𝑜𝑢𝑑_𝑏𝑎𝑠𝑒_𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 
 
Interaction terms were also derived using: 
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Figure 1. Seasonal classification calendar for the four cities. 
 
 
 

 
 

Figure 2. Distribution of PM2.5 by country. 
 
 
 

𝑎𝑒𝑟𝑜𝑠𝑜𝑙_𝑠𝑜𝑙𝑎𝑟_𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛
= 𝑎𝑏𝑠𝑜𝑟𝑏𝑖𝑛𝑔_𝑎𝑒𝑟𝑜𝑠𝑜𝑙_𝑖𝑛𝑑𝑒𝑥
× 𝑠𝑜𝑙𝑎𝑟_𝑧𝑒𝑛𝑖𝑡ℎ_𝑎𝑛𝑔𝑙𝑒𝑜𝑧𝑜𝑛𝑒_𝑡𝑒𝑚𝑝_𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛
=  𝑜𝑧𝑜𝑛𝑒_𝑐𝑜𝑙𝑢𝑚𝑛_𝑑𝑒𝑛𝑠𝑖𝑡𝑦 
×  𝑜𝑧𝑜𝑛𝑒_𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒_𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 

 
Additionally, a seasonal feature was derived for each city. 
Figure 1 below illustrates how the seasonal classifications 
were assigned across the months for different cities. 

 
 
Data exploration 

 
Figure 2 above shows the distribution of PM2.5 across the 
four cities in the selected countries. There is a wide 

disparity in the concentration of PM2.5 across the cities, 
which can be attributed to the varying degrees of industria-
lisation, urbanisation, and environmental regulation in 
these countries. Nigeria has the highest concentration of 
PM2.5, with numerous data points reaching up to 400, 
indicating severe air pollution.  Kenya follows with a 
significantly lower concentration, although there are a few 
outliers higher than 400. Burundi and Uganda have the 
lowest concentration levels, with Uganda slightly higher 
than Burundi, but both are below 200, indicating that there 
might be relatively better air quality in these countries 
compared to Nigeria and Kenya. The linear relationships 
between PM2.5 and the feature variables were conducted 
using pair-wise Pearson correlations and visualised to 
reveal the strength and direction of association. 
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Figure 3. Top 20 Features with their Correlations with PM2.5. 
 
 
 

Figure 3 shows the top 20 features that are most positively 
and negatively correlated with PM2.5. It shows that spatial, 
solar, and atmospheric features stand out in their 
relationship with PM2.5. Longitude has a correlation of 
−0.29, while latitude is 0.28. This implies that PM2.5 tends 
to increase as we move north and decrease as we move 
east. Also, cloud surface albedo (−0.20), uvaerosolindex 
sensor altitude (−0.19), hour_sin (−0.19), and ozone 
column number density (−0.17) show negative 
relationships, meaning PM2.5 reduces as these increase. 
On the positive side, month and year both have a 
correlation of 0.20, while hour, aerosol solar interaction, 
and absorbing aerosol index also show moderate positive 
values. This suggests that time-related patterns and 
aerosol properties contribute to PM2.5 levels. A few 
features, like cloud fraction and cloud top pressure, have 
very weak correlations. They may still matter in non-linear 
ways, but are not strongly linearly related to PM2.5. Other 
features with strong negative correlation include ozone 
solar azimuth angle, cloud solar azimuth angle, and 
uvaerosolindex solar azimuth angle, each with about 
−0.22. These show that solar angles have a role in 
reducing PM2.5, likely because of their influence on 
sunlight and how it interacts with aerosols. Also, cloud 
surface albedo (−0.20), uvaerosolindex sensor altitude 
(−0.19), hour_sin (−0.19), and ozone column number 
density (−0.17) show negative correlations, meaning 
PM2.5 reduces as these increase. 

Evaluation metrics 
 
To evaluate the performance of the models used in this 
study, four widely used error and goodness-of-fit metrics, 
which are Mean Squared Error (MSE), Mean Absolute 

Error (MAE), Coefficient of Determination (𝑅2) and 

Adjusted 𝑅2.  were employed. These metrics will help us 
capture both the accuracy of the predictions and the 
explanatory power of the models for a balanced 
assessment of performance from different perspectives. 
 

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖̂)

2

𝑛

𝑖=1

 

 

𝑀𝐴𝐸 =   
1

𝑛
∑ |𝑦𝑖 − 𝑦𝑖̂|

𝑛

𝑖=1

  

 
Where 𝑦𝑖   is the actual PM2.5 value and 𝑦𝑖 is the predicted 
PM2.5 values, and n is the total number of observations. 
 

𝑅2 = 1 −  
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

  

 
Where 𝑦̅   is the mean of the actual PM2.5 values 
 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 = 1 − (1 − 𝑅2) ×
𝑛 − 1

𝑛 − 𝑝 − 1
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Figure 4.  LISA Classification scheme. 
 
 
 

Where n is the number of observations and p is the number 
of independent variables. 
 
 
Spatial autocorrelation analysis 
 
Global and local spatial autocorrelation of PM2.5 
concentrations were evaluated using Moran's I and Local 
Indicators of Spatial Association (LISA). Spatial weights 
matrices were constructed using k-nearest neighbours. 
Global Moran's I was computed to assess overall 
clustering; it was calculated using: 
 

𝐼 =  
𝑁

𝑊
×

∑ ∑ (𝑥𝑖 − 𝑥̅)(𝑥𝑗 − 𝑥)̅̅ ̅
𝑗𝑤𝑖𝑗𝑖

∑ (𝑥𝑖 − 𝑥̅𝑖 )2
 

 
Where: N = total number of spatial units (sites), W = the 
sum of all spatial weights 𝑊𝑖𝑗, 𝑥𝑖  𝑎𝑛𝑑 𝑥𝑗 = The PM2.5 

concentration values at locations i and j, 𝑤𝑖𝑗 = is the spatial 

weight between locations 𝑖 and 𝑗 based on proximity (k- 
nearest neighbors). 
 
The value of Moran’s I typically ranges between -1 and +1: 
 
𝐼 > 0 indicates spatial clustering (similar values are near 
each other), 
𝐼 < 0 suggests spatial dispersion (dissimilar values are 
near each other), and 
𝐼 ≈ 0 signifies a random spatial distribution. 

This research also uses LISA to identify local patterns, 
including High-High (HH), Low-Low (LL), High-Low (HL), 
and Low-High (LH) clusters. Statistical significance was 
assessed at p<0.05. 

Figure 4 illustrates the classification scheme used in 
Local Indicators of Spatial Association (LISA) analysis for 
interpreting spatial clustering patterns. The High-High 
(HH) quadrant represents areas with high concentration 
values surrounded by other high values (Hotspots) and is 
considered statistically significant at p<0.05. The Low-Low 
(LL) quadrant depicts locations with low PM2.5 
concentrations, also surrounded by low values (Cold 
spots), significant at p < 0.05. High-Low (HL) areas are 
those where a high concentration site is surrounded by low 
concentration sites, typically reflecting spatial outliers, 
significant at p<0.05, while the non-significant quadrant 
depicts other areas which are not statistically significant at 
p<0.05. 

Table 1 shows the revised air quality standards for 
particle pollution and updates to the air quality index (AQI) 
according to NAAQS. This standard categorisation is used 
in this research for a better understanding and 
interpretation of the different levels of PM2.5. 
 
 

RESULTS  
 
Table 2 presents the comparative performance of the five 
predictive models used in estimating PM2.5, which was 
evaluated using RMSE, MAE, R², Adj R², and model fitting  
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Table 1. The National Ambient Air Quality Standards for Particle Pollution (NAAQS, United States: Environmental and 
Protection Agency (EPA, 2024). 
 

AQI Category Index Values 
Previous Breakpoints (1999 

AQI) (µg/m³, 24-hour average) 
Revised Breakpoints 

(µg/m³, 24-hour average) 

Good 0 – 50 0.0 – 15.0 0.0 – 12.0 

Moderate 51 – 100 >15.0 – 40 12.1 – 35.4 

Unhealthy for Sensitivity Groups 101 – 150 >40 – 65 35.5 – 55.4 

Unhealthy 151 – 200 >65 – 150 55.5 – 150.4 

Very Unhealthy 201 – 300 >150 – 250 150.5 – 250.4 

Hazardous 
301 – 400 >250 – 350 250.5 – 350.4 

401 – 500 >350 – 500 350.5 – 500 
 

 
 
 

Table 2. Performance of models in estimating PM2.5. 
 

Metrics Ridge PolyRegression_order_2 XGBoost LightGBM Neural Network 

RMSE 21.901584 21.327934 12.014032 12.866516 20.575495 

MAE 11.226098 10.144270 5.314148 6.705398 9.062059 

Rsquared 0.206685 0.247698 0.761289 0.726211 0.299843 

Adj Rsquared 0.183932 0.226122 0.754443 0.718358 0.279762 

Fit Time (s) 0.320522 7.062807 23.057269 2.182495 15.967955 
 
 
 

time. From the results, it is evident that XGBoost 
outperformed all other models across all evaluation 
metrics, achieving the lowest RMSE of 12.01 µg/m³ and 
MAE of 5.31 µg/m³, which indicate superior accuracy in 
predicting PM2.5 concentrations. The model also achieved 
the highest R² value of 0.76, which implies that 
approximately 76% of the variability in PM2.5 
concentration was explained by the features used in the 
model. Its corresponding Adjusted R² of 0.75 further 
confirms the model’s robustness after accounting for the 
number of predictors in the model.  LightGBM followed 
closely, with an RMSE of 12.87 µg/m³ and MAE of 6.71 
µg/m³. The R² and Adjusted R² values for LightGBM are 
0.73 and 0.72, respectively, which indicate strong 
explanatory power, though slightly less than XGBoost. The 
Feedforward Neural Network model demonstrated 
moderate performance, with an RMSE of 20.58 µg/m³ and 
an R² of 0.30. Ridge Regression and Polynomial 
Regression (order 2), on the other hand, exhibited the 
weakest predictive abilities, with higher errors of RMSE 
21.90 µg/m³ and 21.33 µg/m³ and lower R² values 0.21 and 
0.25, respectively.  In terms of computational efficiency, 
Ridge Regression was found to be the fastest model, 
which trained at 0.32 seconds, while XGBoost, despite 
being the most accurate, required the longest fitting time 
at 23.06 seconds, which may be due to its iterative 
boosting process. 
 
 
Spatial distribution of actual and predicted PM2.5 
concentrations for various cities 
 
Figure 5a  (left)  and  5b (right)  above   present  the  spatial  

distribution of actual and predicted PM2.5 concentrations 
for Bujumbura (Burundi), as estimated by the XGBoost 
model, which was identified as the best-performing model 
in this study. A comparison of the two maps reveals a close 
alignment between the predicted and actual PM2.5 values 
across most locations. Although there are minor 
discrepancies which are evident in specific areas. In the 
Ntahangwa region, the model predicted PM2.5 
concentrations to fall within the 35.5–55.4 µg/m³ range, 
which corresponds to the Unhealthy for Sensitive Groups 
category based on the revised 24-hour AQI breakpoints. 
However, the actual measurements in this area 
predominantly range between 12.1–35.4 µg/m³, which is 
classified as Moderate. This indicates that there is a slight 
overestimation of the model in this locality. Generally, the 
model performed well in predicting PM2.5 in Bujumbura 
(Burundi). 

Figure 6a (left) and 6b (right) above illustrate the spatial 
distribution of actual and predicted PM2.5 concentrations 
for Kampala (Uganda) as estimated by the XGBoost 
model. From the results, it is evident that the XGBoost 
model generally performs well in capturing the spatial 
distribution of PM2.5 across the city, except for some 
discrepancies in some localities. For example, in the 
Kesenko area, the XGBoost predicted that the value lies 
between 12.1–35.4 µg/m³ range, which corresponds to the 
Moderate AQI category, while the actual data shows that it 
lies between 55.5–150.4 µg/m³ range, which is classified 
as unhealthy. Similarly, the model estimated the 
concentration of PM2.5 around Yoka locality to be between 
12.1–35.4 µg/m³, while the original concentration is 
between 0.0–12.0 µg/m³, which falls under the good 
category.   The   XGBoost  model  accurately  captured  the 
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Figure 5a. Bujumbura, Burundi Actual Data         Figure 5b. Bujumbura, Burundi Predicted Data 
 
 

 
 

Figure 6a. Kampala, Uganda Actual Data.       Figure 6b. Kampala, Uganda Predicted Data. 
 
 
 

broader spatial distribution of PM2.5 concentrations in 
Kampala. 

Figure 7a (left) and 7b (right) depict the actual and 
predicted spatial distribution of PM2.5 concentrations for 

Lagos (Nigeria) as estimated by the XGBoost model. From 
the figures, it can be observed that even though Lagos 
recorded the highest PM2.5 concentrations among all the 
cities   considered    in    this    study,    the   model   generally 
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Figure 7a. Lagos, Nigeria Actual Data           Figure 7b. Lagos, Nigeria Predicted Data. 
 
 
 

performed well in estimating the spatial distribution of 
PM2.5 across the city. Most concentration ranges for 
different localities were accurately predicted by the model. 
However, there are noticeable discrepancies in specific 
areas. For instance, the model estimated PM2.5 
concentrations in the Idimu area to fall within the 55.5–
150.4 µg/m³ range, classified as Unhealthy, whereas the 
actual data indicates a concentration range of 35.5–55.4 
µg/m³, which corresponds to the Unhealthy for Sensitive 
Groups category. Similarly, the model predicted PM2.5 
concentrations in Illado locality to be between 35.5–55.4 
µg/m³, while the actual spatial concentration was within 
12.1–35.4 µg/m³, which is categorised as Moderate. 
Overall, while these discrepancies exist, the model was 
able to capture the broader pattern and intensity of PM2.5 
concentrations across Lagos with reasonable accuracy.   

Figure 8a (left) and 8b (right) show the spatial 
distribution of actual and predicted PM2.5 concentrations 
for Nairobi (Kenya), which was estimated by the XGBoost 
model. These visualisations show that the model generally 
performs well in capturing the spatial patterns of PM2.5 
concentrations across the city, with only minor 
discrepancies observed in specific areas. For instance, the 
model estimated the concentration of PM2.5 in Karen C 
area to fall within the 12.1–35.4 µg/m³ range, which 
corresponds to being Moderate according to the AQI 
category, whereas the actual observed values fall within 
the 0.0–12.0 µg/m³ range, categorised as Good. Also, the 
model estimated concentrations in Tassia locality within 
the range of 0.0–12.0 µg/m³, while the actual measured 
concentrations were within 12.1–35.4 µg/m³. Despite 

these minor misestimations, the model accurately 
captured the broader spatial distribution and intensity of 
PM2.5 concentrations in Nairobi, which effectively 
identifies most areas of higher and lower air pollution levels 
across the city. 
 
 
Spatial concentration and analysis 
 
Figure 9a (left) and 9b (right) above present the actual 
PM2.5 concentration of the data used for training and the 
LISA cluster map for Bujumbura (Burundi). From the 
concentration map, it can be observed that Bujumbura 
exhibits a spatial distribution pattern ranging from Good to 
Moderate, Unhealthy for Sensitive Groups, and Unhealthy 
AQI categories. Although the spatial distribution map 
reveals that most of the study area comprises higher 
PM2.5 concentration values, with visible clusters of data 
points. A closer inspection of the LISA cluster map 
indicates that most of these apparent clusters are 
statistically non-significant at p ≥ 0.05. One significant 
cluster identified is within Bujumbura itself, which is 
classified as a High-High (HH) cluster. This means that this 
area has a high PM2.5 concentration value and is 
surrounded by neighbouring sites with similarly high 
concentration values, forming a significant hotspot at p < 
0.05. The computed Global Moran’s I statistic for the 
PM2.5 concentrations in Bujumbura is 0.082, which 
suggests a weak but positive spatial autocorrelation. This 
value implies that while there is a slight tendency for similar 
PM2.5 concentration  values  to  cluster  together  spatially,  
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Figure 8a. Nairobi, Kenya Actual Data.           Figure 8b. Nairobi, Kenya Predicted Data. 
 
 

 
 

Figure 9a. Bujumbura Burundi PM2.5 Concentration        Figure 9b. Bujumbura Burundi LISA Cluster Map 
 
 
 

the overall clustering pattern across the study area is not 
strongly pronounced. 

Figure 10a (left) and 10b (right) present the spatial 
distribution of actual PM2.5 concentrations and the LISA 
cluster map for Kampala (Uganda). From the 
concentration map, it can be observed that a large 
proportion of PM2.5 data points across Kampala fall within 
the Unhealthy category according to the revised 24-hour 

AQI breakpoints. While a few locations recorded values 
within the Good, Moderate, or Unhealthy for Sensitive 
Groups categories, these points tend to cluster visually 
with areas of higher PM2.5 concentrations. The LISA 
cluster map reveals that most of these observed spatial 
groupings are statistically non-significant at p ≥ 0.05, 
except for the Kyebando area, which emerges as a 
statistically significant High-High  (HH)  cluster  at  p < 0.05.  
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Figure 10a. Kampala, Uganda PM2.5 Concentration           Figure 10b. Kampala, Uganda LISA Cluster Map. 
 
 
 

 
 

Figure 11a. Lagos, Nigeria PM2.5 Concentration           Figure 11b. Lagos, Nigeria LISA Cluster Map 
 
 
 

The possible causes of elevated PM2.5 concentrations in 
this locality may likely include intense human and vehicular 
activities, the presence of small-scale informal industries, 
open waste burning, among others. The computed Global 
Moran’s I statistic for PM2.5 concentrations in Kampala 
was 0.167, which indicates a weak to moderate positive 
spatial autocorrelation. This implies that while there is a 
tendency for similar PM2.5 concentration values to cluster 
spatially, the overall pattern of clustering is not strongly 
pronounced across the entire study area.  

Figure 11a (left) and 11b (right) show the spatial 
distribution of actual PM2.5 concentrations and the LISA 

cluster map for Lagos (Nigeria), based on the observations 
used in this study. From Figure 11a, it is evident that Lagos 
exhibits a diverse spatial pattern, with concentration 
values cutting across all AQI categories. A closer 
examination of the spatial distribution reveals that areas 
with particularly high PM2.5 concentrations are 
concentrated around Ebute-Metta and parts of Bariga. 
These places are both densely populated and highly 
industrialised urban neighbourhoods within the Lagos 
Mainland. These areas are known to be characterised by 
a combination of intense vehicular traffic, proximity to 
industrial facilities, port-related activities, and a high  
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Figure 12a. Nairobi, Kenya PM2.5 Concentration.          Figure 12b. Nairobi, Kenya LISA Cluster Map. 
 
 
 

prevalence of biomass fuel used for domestic and informal 
industrial purposes, which contributes significantly to 
PM2.5 emissions. The LISA map indicates that the 
neighbourhood near Ebute-Metta is identified as a 
statistically significant High-High (HH) cluster at p < 0.05. 
This implies that this area not only records high PM2.5 
concentrations but is also surrounded by other sites with 
similarly high concentration levels, forming a distinct air 
pollution hotspot.  Global Moran’s I statistic for Lagos is 
computed as 0.686, which implies a strong positive spatial 
autocorrelation. This relatively high Moran’s I value 
suggests a pronounced tendency for similar PM2.5 
concentration values to cluster together spatially across 
the city. In other words, high PM2.5 values are not 
randomly dispersed but are spatially concentrated in 
certain neighbourhoods, most notably around Ebute Metta 
and adjacent areas. 

Figure 12a (left) and 12b (right) present the spatial 
distribution of actual PM2.5 concentrations and the 
corresponding LISA cluster map for Nairobi (Kenya). 
Figure 12a records a full range of AQI categories for 
Nairobi. A closer inspection of the LISA cluster map 
reveals that most of the observed data points are not 
statistically significant at p ≥ 0.05, which suggests that 
apparent clusters of similar PM2.5 values on the 
concentration map may largely occur by chance. However, 
a notable exception is the Tassia area, which stands out 
as a statistically significant High-High (HH) cluster. This 
shows that Tassia records high PM2.5 concentrations and 
is surrounded by neighbouring sites with similarly high 
values, significant at p < 0.05. Interestingly, this HH cluster 
appears relatively isolated, as the immediate surrounding 
areas predominantly fall within the Non-Significant (NS) 
category on the LISA map. Global Moran’s I statistic of 

0.046 for PM2.5 concentrations in Nairobi confirms a very 
weak but positive spatial autocorrelation. This low value 
suggests that, overall, similar PM2.5 concentrations are 
only weakly clustered across the city, and most of the 
observed clustering patterns, apart from areas like Tassia, 
are statistically indistinguishable from random spatial 
patterns. 
 
 
Actual vs predicted PM2.5 by models and feature 
importance comparison (XGBoost top 20 features) 
 
 
Figure 13 above presents the relationship between the 
actual and predicted PM2.5 concentrations for each 
predictive model used in this study. The scatter plots 
reveal that the predictions generated by the XGBoost 
model exhibit a strong positive relationship with the actual 
values, with a high R-squared value of 0.762. This is 
closely followed by LightGBM with 0.731, then, 
Feedforward Neural Network (FNN) model with a 
moderate relationship value of 0.320. In comparison, the 
Polynomial Ridge (order 2) and Ridge Regression (order 
1) models recorded lower R-squared values of 0.254 and 
0.209, respectively. These results show the superior 
performance of ensemble-based models, particularly 
XGBoost and LightGBM, in accurately capturing the 
relationship between actual and predicted PM2.5 
concentrations in this multi-city study. 

Figure 14 displays the top 20 features influencing PM2.5 
prediction as determined by the XGBoost model, with its 
importance in percentage values. For context, the 
corresponding importance of these features in the 
LightGBM model is  also  shown  alongside  XGBoost. This  
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Figure 13. Actual vs predicted PM2.5 by Models. 
 
 
 

 
 

Figure 14. Feature Importance Comparison (XGBoost Top 20 Features).



138        Glo. J. Earth Environ. Sci. 
 
 
 
is done to highlight both models’ reliance on temporal, 
geospatial, and atmospheric indicators, while also 
revealing differences in their sensitivity to specific 
environmental factors. XGBoost identifies temporal and 
seasonal features as the most critical, with season (14.1%) 
and year (10.2%) ranked highest. These results show the 
strong seasonal variation in PM2.5 levels, which are likely 
driven by changes in meteorological conditions, biomass 
burning, and human activity patterns. Other notable 
temporal features include month_sin (5.1%), hour_sin 
(5.0%), and day (2.8%), which together highlight the 
relevance of periodic cycles such as diurnal and monthly 
variations. Geospatial features like site_longitude (5.8%) 
and site_latitude (1.9%) rank slightly lower in XGBoost but 
are given higher importance in LightGBM as 12.2% and 
9.4% respectively. This suggests that LightGBM may be 
more sensitive to spatial heterogeneity in air pollution 
sources, such as urban layout and emission hotspots. 
Among the cloud-related and solar geometry features, 
variables like cloud_solar_azimuth_angle (4.1%), 
cloud_surface_albedo (1.8%), and cloud_solar_zenith_ 
angle (2.3%) are moderately important. These factors 
influence solar radiation reaching the surface and 
atmospheric photochemistry, thereby indirectly affecting 
PM2.5 formation and dispersion. The presence of 
ozone_solar_azimuth_angle and uvaerosolindex_solar_ 
azimuth_angle further indicates the role of atmospheric 
composition and aerosol dynamics, though their 
importance is comparatively lower. Also, features derived 
from atmospheric trace gases, such as 
ozone_o3_column_number_density (2.1%) and 
ozone_cloud_fraction (2.4%), suggest a weaker but non-
negligible relationship between PM2.5 and columnar 
ozone levels. 
 
 
DISCUSSION 
 
It is worth noting that a significant factor which contributes 
to the strong performance of this study’s XGBoost model 
is the extensive feature engineering process undertaken. 
The inclusion of a custom-derived seasonal feature, which 
accounted for the unique rainfall and dry season cycles 
specific to each city, appears to have enhanced the 
model’s ability to capture temporal variations in PM2.5 
concentrations. Unlike many existing studies such as Jia 
et al. (2023), Musa et al. (2024), Parra et al. (2024), and 
Wang et al. (2023) that rely solely on standard 
meteorological, socio-economic and pollutant variables, 
this study tailored the feature space to reflect region-
specific environmental dynamics to increase predictive 
accuracy in a heterogeneous multi-city context. The 
XGBoost model achieved an R² of 0.76 and RMSE of 
12.01 µg/m³ across four cities. This result aligns closely 
with the research by Zaman et al. (2021), which shows that 
the Random Forest model achieved an R² value which 
ranges from 0.53–0.76 in estimating PM2.5 concentrations  

 
 
 
 
across 65 sites in Malaysia. Moursi et al. (2019) found that 
Extra Trees slightly performed better than Random Forest 
with an R² value above 0.9, while deep learning models 
like LSTM achieved competitive results. This study’s R² 
value is comparatively lower, which is due to the diverse 
urban settings and complex pollution dynamics across the 
four cities in this study. A study by Zhang et al. (2021) in 
South Africa’s industrialised Highveld region shows that 
the Random Forest model achieved an R² of 0.80 and an 
RMSE of 9.40 µg/m³, which is marginally higher than the 
one in this study. This is because Zhang et al. (2021) study 
focuses on a single region with higher data density, while 
this study covers four cities across four different countries 
with varying urban, peri-urban, and rural characteristics. A 
study by Patel et al. (2025) across five cities in 
Maharashtra (India), found that LSTM models performed 
better than traditional ML models, with an R² value ranging 
from 0.99 to 0.998. This level of accuracy is higher than 
the one obtained in this study because of a larger dataset 
of five years used. This is mostly suitable for deep learning 
models, which remain a limitation in many African 
contexts. 
 
 
Conclusion 
 
In this study, scalable machine learning models were 
employed to estimate PM2.5 concentrations across four 
African cities using satellite-derived Aerosol Optical Depth 
(AOD) data, temporal and seasonally engineered features. 
The results show that the ensemble-based models used 
performed better than other methods in accurately 
predicting PM2.5 levels across the cities, with XGBoost 
achieving the highest performance metrics across all 
evaluation criteria. The importance of including temporal 
cycles and localized seasonal characteristics in air quality 
modeling was also highlighted in this study. Some certain 
limitations were encountered in this study despite the 
encouraging performance. Important cloud-related and 
solar geometry variables were excluded due to excessive 
missing values, which might have affected the 
performance of the models. Future studies are 
encouraged to address this by improving data collection, 
including more comprehensive atmospheric parameters 
from Sentinel-5P or other high-resolution earth 
observation platforms. They can also consider including 
some socio-economic variables such as population 
density, traffic volume, industrial activity, and land use 
characteristics. While this study focused on four cities 
across four countries, future studies can improve upon this 
by increasing the number of cities within each country and 
consider including more countries to strengthen the spatial 
representativeness and robustness of the models. Models 
developed in this study are lightweight and 
computationally efficient, which makes them well-suited for 
deployment in real-time air quality monitoring systems with 
an appropriate real-time data pipeline. 
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