ISSN: 2756-6684
Model: Open Access/Peer Reviewed
DOI: 10.31248/AJPS
Start Year: 2018
Email: ajps@integrityresjournals.org
https://doi.org/10.31248/AJPS2024.106 | Article Number: C76CDF173 | Vol.6 (1) - February 2025
Received Date: 28 October 2024 | Accepted Date: 06 February 2025 | Published Date: 28 February 2025
Authors: Egbo Chijioke* , Ngiangia Alalibo and Obong Hilary
Keywords: water, Ethylene glycol, tin oxide, nanofluid, Nusselt number, Sherwood number, skin friction.
The analytic study of ethylene glycol base and water base tin oxide nanofluids in an MHD spherical enclosure using combined models of thermal conductivity and effective viscosity was carried out based on the optically thick medium of the Rosseland radiative heat flux approximation. The governing equation was non-dimensionalized and solved using the Laplace Transform Technique for Sherwood number, Nusselt number, and Skin friction from the respective solution of concentration, energy, and velocity equations. Results of immense engineering importance regarding how energy and mass transfer efficiency in a spherically enclosed system depends on the Prandtl number, parameter of radiation, how drag forces in spherically enclosed system can be related to Schmidt number, parameter of chemical reaction, and how the viscous resistance within fluid boundary layer of a spherically enclosed system is characterized base on the dimensionless hydrodynamic parameters as well as the nanoparticles volume fraction of the novel nanofluid samples considered.
Abu-Nada, E., Masoud, Z., Oztop, H. F., & Campo, A. (2010). Effect of nanofluid variable properties on natural convection in enclosures. International Journal of Thermal Sciences, 49(3), 479-491. https://doi.org/10.1016/j.ijthermalsci.2009.09.002 |
||||
Acharya, N. (2022). Buoyancy driven magnetohydrodynamic hybrid nanofluid flow within a circular enclosure fitted with fins. International Communications in Heat and Mass Transfer, 133, 105980. https://doi.org/10.1016/j.icheatmasstransfer.2022.105980 |
||||
Ahmad, A., Asghar, S., & Afzal, S. (2016). Flow of nanofluid past a Riga plate. Journal of Magnetism and Magnetic Materials, 402, 44-48. https://doi.org/10.1016/j.jmmm.2015.11.043 |
||||
Arani, A. A., & Amani, J. J. E. T. (2012). Experimental study on the effect of TiO2-water nanofluid on heat transfer and pressure drop. Experimental Thermal and Fluid Science, 42, 107-115. https://doi.org/10.1016/j.expthermflusci.2012.04.017 |
||||
Ashwinkumar, G. P., Samrat, S. P., & Sandeep, N. (2021). Convective heat transfer in MHD hybrid nanofluid flow over two different geometries. International Communications in Heat and Mass Transfer, 127, 105563. https://doi.org/10.1016/j.icheatmasstransfer.2021.105563 |
||||
Aziz, A., & Khan, W. A. (2012). Natural convective boundary layer flow of a nanofluid past a convectively heated vertical plate. International Journal of Thermal Sciences, 52, 83-90. https://doi.org/10.1016/j.ijthermalsci.2011.10.001 |
||||
Bhattacharya, P. S. S. K., Saha, S. K., Yadav, A., Phelan, | ||||
P. E., & Prasher, R. S. (2004). Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids. Journal of Applied Physics, 95(11), 6492-6494. https://doi.org/10.1063/1.1736319 |
||||
Chamkha, A. J., Abbasbandy, S., Rashad, A. M., & Vajravelu, K. (2012). Radiation effects on mixed convection over a wedge embedded in a porous medium filled with a nanofluid. Transport in Porous Media, 91, 261-279. https://doi.org/10.1007/s11242-011-9843-5 |
||||
Farooq, U., Jan, A., & Hussain, M. (2024). Impact of thermal radiations, heat generation/absorption and porosity on MHD nanofluid flow towards an inclined stretching surface: non‐similar analysis. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 104(3), e202300306. https://doi.org/10.1002/zamm.202300306 |
||||
Jalili, B., Sadighi, S., Jalili, P., & Ganji, D. D. (2022). Numerical analysis of MHD nanofluid flow and heat transfer in a circular porous medium containing a Cassini oval under the influence of the Lorentz and buoyancy forces. Heat Transfer, 51(7), 6122-6138. https://doi.org/10.1002/htj.22582 |
||||
Karimipour, A. (2015). New correlation for Nusselt number of nanofluid with Ag/Al2O3/Cu nanoparticles in a microchannel considering slip velocity and temperature jump by using lattice Boltzmann method. International Journal of Thermal Sciences, 91, 146-156. https://doi.org/10.1016/j.ijthermalsci.2015.01.015 |
||||
Khan, W. A., & Aziz, A. (2011). Natural convection flow of a nanofluid over a vertical plate with uniform surface heat flux. International Journal of Thermal Sciences, 50(7), 1207-1214. https://doi.org/10.1016/j.ijthermalsci.2011.02.015 |
||||
Khan, W. A., & Pop, I. (2010). Boundary-layer flow of a nanofluid past a stretching sheet. International Journal of Heat and Mass Transfer, 53(11-12), 2477-2483. https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.032 |
||||
Koo, J., & Kleinstreuer, C. (2005). Laminar nanofluid flow | ||||
in microheat-sinks. International journal of heat and mass transfer, 48(13), 2652-2661. | ||||
Koo, J., & Kleinstreuer, C. (2004). A new thermal | ||||
conductivity model for nanofluids. Journal of Nanoparticle research, 6, 577-588. | ||||
Kumar, G. V., Rehman, K. U., Kumar, R. V. M. S. S. K., & Shatanawi, W. (2022). Unsteady magnetohydrodynamic nanofluid flow over a permeable exponentially surface manifested with non-uniform heat source/sink effects. In: Waves in Random and Complex Media. Taylor & Francis. Pp. 1-19. https://doi.org/10.1080/17455030.2022.2072531 |
||||
Loni, R., Asli-Ardeh, E. A., Ghobadian, B., & Kasaeian, A. J. E. C. (2018b). Experimental study of carbon nano tube/oil nanofluid in dish concentrator using a cylindrical cavity receiver: outdoor tests. Energy conversion and management, 165, 593-601. https://doi.org/10.1016/j.enconman.2018.03.079 |
||||
Loni, R., Asli-Ardeh, E. A., Ghobadian, B., Kasaeian, A. B., & Bellos, E. (2018a). Thermal performance comparison between Al2O3/oil and SiO2/oil nanofluids in cylindrical cavity receiver based on experimental study. Renewable Energy, 129, 652-665. https://doi.org/10.1016/j.renene.2018.06.029 |
||||
Makinde, O. D., & Aziz, A. (2011). Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. International Journal of Thermal Sciences, 50(7), 1326-1332. https://doi.org/10.1016/j.ijthermalsci.2011.02.019 |
||||
Mangrulkar, C. K., & Kriplani, V. M. (2013). Nanofluid heat transfer-a review. International Journal of Engineering and Technology, 3(2), 136-142. | ||||
Motahari, K., & Barati, S. (2019). Optimization of Nusselt number of Al2O3/water nanofluid using response surface methodology. Iranian Journal of Chemistry and Chemical Engineering, 38(3), 309-317. | ||||
Nasiri, M., Etemad, S. G., & Bagheri, R. (2011). Experimental heat transfer of nanofluid through an annular duct. International Communications in Heat and Mass Transfer, 38(7), 958-963. https://doi.org/10.1016/j.icheatmasstransfer.2011.04.011 |
||||
Nasrin, R., Alim, M. A., & Chamkha, A. J. (2012). Prandtl number variation on transient forced convection flow in a fluid valve using nanofluid. International Journal of Engineering, Science and Technology, 4(2), 1-16. https://doi.org/10.4314/ijest.v4i2.1 |
||||
Ojjela, O. (2022). Numerical investigation of heat transport in Alumina-Silica hybrid nanofluid flow with modeling and simulation. Mathematics and Computers in Simulation, 193, 100-122. https://doi.org/10.1016/j.matcom.2021.09.022 |
||||
Patil, P. M., Shashikant, A., & Hiremath, P. S. (2018). Influence of liquid hydrogen and nitrogen on MHD triple diffusive mixed convection nanoliquid flow in presence of surface roughness. International Journal of Hydrogen Energy, 43(43), 20101-20117. https://doi.org/10.1016/j.ijhydene.2018.09.033 |
||||
Rout, B. C., & Mishra, S. R. (2018). Thermal energy transport on MHD nanofluid flow over a stretching surface: A comparative study. Engineering Science and Technology, an International Journal, 21(1), 60-69. https://doi.org/10.1016/j.jestch.2018.02.007 |
||||
Saghir, M. Z., Ahadi, A., Yousefi, T., & Farahbakhsh, B. (2016). Two-phase and single phase models of flow of nanofluid in a square cavity: comparison with experimental results. International Journal of Thermal Sciences, 100, 372-380. https://doi.org/10.1016/j.ijthermalsci.2015.10.005 |
||||
Salari, M., Mohammadtabar, M., & Mohammadtabar, A. (2014). Numerical solutions to heat transfer of nanofluid flow over stretching sheet subjected to variations of nanoparticle volume fraction and wall temperature. Applied Mathematics and Mechanics, 35, 63-72. https://doi.org/10.1007/s10483-014-1772-8 |
||||
Sarkar, A., Mondal, H., & Nandkeolyar, R. (2023). Effect of thermal radiation and nth order chemical reaction on non-Darcian mixed convective MHD nanofluid flow with non-uniform heat source/sink. International Journal of Ambient Energy, 44(1), 1931-1947. https://doi.org/10.1080/01430750.2023.2198534 |
||||
Shehzad, S. A., Hayat, T., Alsaedi, A., & Obid, M. A. (2014). Nonlinear thermal radiation in three-dimensional flow of Jeffrey nanofluid: a model for solar energy. Applied Mathematics and Computation, 248, 273-286. https://doi.org/10.1016/j.amc.2014.09.091 |
||||
Sheikholeslami, M., & Ganji, D. D. (2013). Heat transfer of Cu-water nanofluid flow between parallel plates. Powder Technology, 235, 873-879. https://doi.org/10.1016/j.powtec.2012.11.030 |
||||
Sheri, S. R., & Thumma, T. (2016). Heat and mass transfer effects on natural convection flow in the presence of volume fraction for copper-water nanofluid. Journal of Nanofluids, 5(2), 220-230. https://doi.org/10.1166/jon.2016.1214 |
||||
Solomon, A. B., van Rooyen, J., Rencken, M., Sharifpur, M., & Meyer, J. P. (2017). Experimental study on the influence of the aspect ratio of square cavity on natural convection heat transfer with Al2O3/Water nanofluids. International Communications in Heat and Mass Transfer, 88, 254-261. https://doi.org/10.1016/j.icheatmasstransfer.2017.09.007 |
||||
Suresh, S., Venkitaraj, K. P., Selvakumar, P., & Chandrasekar, M. (2012). Effect of Al2O3-Cu/water hybrid nanofluid in heat transfer. Experimental Thermal and Fluid Science, 38, 54-60. https://doi.org/10.1016/j.expthermflusci.2011.11.007 |
||||
Upadhyay, S., Chandra, L., & Sarkar, J. (2021). A generalized Nusselt number correlation for nanofluids, and look-up diagrams to select a heat transfer fluid for medium temperature solar thermal applications. Applied Thermal Engineering, 190, 116469. https://doi.org/10.1016/j.applthermaleng.2020.116469 |
||||
Zerradi, H., Ouaskit, S., Dezairi, A., Loulijat, H., & Mizani, S. (2014). New Nusselt number correlations to predict the thermal conductivity of nanofluids. Advanced Powder Technology, 25(3), 1124-1131. https://doi.org/10.1016/j.apt.2014.02.020 |