ISSN: 2756-6684
Model: Open Access/Peer Reviewed
DOI: 10.31248/AJPS
Start Year: 2018
Email: ajps@integrityresjournals.org
https://doi.org/10.31248/AJPS2022.086 | Article Number: BEBC5AF02 | Vol.5 (1) - February 2023
Received Date: 21 December 2022 | Accepted Date: 27 January 2023 | Published Date: 28 February 2023
Authors: Alalibo T. Ngiangia* , Okechukwu Amadi and Tombotamunoa W. Jim-Lawson
Keywords: Entropy, integer decrease, JWKB method, radial Schrodinger equation, reduced parameters, Thermodynamic functions.
The work examined some Coulomb-type potentials under the influence of magnetic field potential and some select thermodynamic functions. The combination of the chosen Coulomb-type potentials and the magnetic field formed the generalized potentials which were put into the time independent radial Schrodinger equation and solution for the energy eigenvalues obtained using the Phase – Integral model. Four thermodynamic functions were considered and the results showed that an increase in the reduced parameters and magnetic field brings about a depreciation of the generalized potentials and the thermodynamic functions as well as the removal of degeneracy and integer decrease in the energy eigenvalues. The study also showed the change of the property of entropy in the classical domain as it enters the quantum mechanical system.
Abu-Shady, M. (2015). Heavy quarkonia and Bc-mesons in the cornell potential with harmonic oscillator potential in the N-dimensional Schrodinger equation. International Journal of Applied Mathematics and Theoretical Physics, 2(2), 16-20. | ||||
Al-Oun, A., Al-Jamel, A., & Widyan, H. (2015). Various properties of heavy quarkonia from Flavor-Independent Coulomb plus quadratic potential. Jordan Journal of Physics, 8(4), 199-203. | ||||
Amadi, P. O., Ikot, A. N., Ngiangia, A. T., Okorie, U. S., Rampho, G. J., & Abdullah, H. Y. (2020). Shannon entropy and Fisher information for screened Kratzer potential. International Journal of Quantum Chemistry, 120(14), e26246. Crossref |
||||
Berkdemir, C., Berkdemir, A., & Han, J. (2006). Bound state solutions of the Schrödinger equation for modified Kratzer's molecular potential. Chemical Physics Letters, 417(4-6), 326-329. Crossref |
||||
Brillouin, L. (1926). The undulatory mechanics of Schrodinger. Compt Rend Academy of Science, Paris, 183, 270-271. Crossref |
||||
Budaca, R. (2016). Bohr Hamiltonian with an energy-dependent unstable Coulomb - like potential. The European Physical Journal A, 52(10), 314. Crossref |
||||
Ciftci, H., & Kisoglu, H. F. (2018). Nonrelativistic Arbitrary-States of Quarkonium through Asymptotic Iteration Method. Advances in High Energy Physics, Volume 2018, Article ID 4549705, 7 pages. Crossref |
||||
Chaudhuri, R. N., & Mondal, M. (1995). Eigenvalues of anharmonic oscillators and the perturbed Coulomb problem in N-dimensional space. Physical Review A, 52(3), 18501859. Crossref |
||||
De, R., Dutt, R., & Sukhatme, U. (1992). Mapping of shape invariant potentials under point canonical transformations. Journal of Physics A: Mathematical and General, 25(13), L843. Crossref |
||||
Edet, C. O., Okorie, U. S., Ngiangia, A. T., & Ikot, A. N. (2020). Bound state solutions of the Schrodinger equation for the modified Kratzer potential plus screened Coulomb potential. Indian Journal of Physics, 94, 425-433. Crossref |
||||
Filip, P. (2015, July). Decay of resonaces in strong magnetic field. In Journal of Physics: Conference Series (Vol. 636, No. 1, p. 012013). IOP Publishing. Crossref |
||||
Froman, N., & Froman P., O. (1965). JWKB Approximations: Contributions to the theory. North Holland Publishing Company, Amsterdam. p. 43. | ||||
Ghatak, A., & Lokanathan, S. (2002) Quan.tum mechanics: Theory and applications (Fourth Edition). Macmillan India Limited, New Delhi. Pp. 371-377. | ||||
Ghatak, A. K., Gallawa, R. L., & Goyal, I. C. (1991). Modified Airy function and WKB solutions to the wave equation. NASA STI/Recon Technical Report N, 92, 20427. Crossref |
||||
Ghatak, A. K., Sauter, E. G., & Goyal, I. C. (1997). Validity of the JWKB formula for a triangular potential barrier. European Journal of Physics, 18(3), 199-204. Crossref |
||||
Griffiths, D., J. (2005). Introduction to quantum mechanics. Pearson Education Inc. New Jersey. p. 275 | ||||
Hamzavi, M., Ikhdair, S. M., & Thylwe, K. E. (2013). Equivalence of the empirical shifted Deng-Fan oscillator potential for diatomic molecules. Journal of Mathematical Chemistry, 51, 227-238. Crossref |
||||
Hassanabadi, H., Chung, W. S., Zare, S., & Bhardwaj, S. B. (2017). -deformed morse and oscillator potential. Advances in High Energy Physics, Volume 2017, Article ID 1730834, 4 pages. Crossref |
||||
Hassanabadi, H., Ikot, A., & Zarrinkamar, S. (2014). Exact solution of Klein-Gordon with the Pöschl-Teller double-ring-shaped Coulomb potential. Acta Physica Polonica A, 126(3), 647-651. Crossref |
||||
Hayashi, H. (2004). Introduction to dynamic spin chemistry: Magnetic field effects on chemical and biochemical reactions (Vol. 8). World Scientific. Crossref |
||||
Heading, J. (1962). An introduction to phase - Integral methods. MMathuen and Co. London. Pp. 18-20 | ||||
Ibekwe, E. E., Ngiangia, A. T., Okorie, U. S., Ikot, A. N., & Abdullah, H. Y. (2020). Bound State Solution of Radial Schrodinger Equation for the Quark-Antiquark Interaction Potential. Iranian Journal of Science and Technology, Transactions A: Science, 44, 1191-1204. Crossref |
||||
Ikhdair, S. M., & Sever, R. (2009). Exact quantization rule to the Kratzer-type potentials: an application to the diatomic molecules. Journal of Mathematical Chemistry, 45, 1137-1152. Crossref |
||||
Ikhdair, S. M. (2011). On the bound-state solutions of the Manning-Rosen potential including an improved approximation to the orbital centrifugal term. Physica Scripta, 83(1), 015010. Crossref |
||||
Ikhdair, S. M., Falaye, B. J., & Hamzavi, M. (2015). Nonrelativistic molecular models under external magnetic and AB flux fields. Annals of Physics, 353, 282-298. Crossref |
||||
Ikot, A. N., Antia, A. D., Akpabio, L. E., & Obu, J. A. (2011). Analytical solution of Schrödinger equation with two-dimensional harmonic potential in cartesian and polar co-ordinates via Nikiforov-Uvarov methods. Journal of Vectorial Relativity, 6, 65-76. | ||||
Ikot, A. N., Chukwuocha, E. O., Onyeaju, M. C., Onate, C. A., Ita, B. I., & Udoh, M. E. (2018). Thermodynamics properties of diatomic molecules with general molecular potential. Pramana Journal of Physics, 90, 22-30. Crossref |
||||
Ikot, A., Isonguyo, C., Chad-Umoren, Y., & Hassanabadi, H. (2015). Solution of spinless salpeter equation with generalized hulthén potential using SUSYQM. Acta Physica Polonica A, 127(3), 674-677. Crossref |
||||
Ikot, A. N., Isonguyo, C. N., Olisa, J. D., & Obong, H. P. (2014a). Pseudospin Symmetry of the Position-Dependent Mass Dirac Equation for the Hulthén Potential and Yukawa Tensor Interaction. Atom Indonesia, 40(3), 149-155. Crossref |
||||
Ikot, A. N., Okorie, U., Ngiangia, A. T., Onate, C. A., Edet, C. O., Akpan, I. O., & Amadi, P. O. (2020). Bound state solutions of the Schrödinger equation with energy-dependent molecular Kratzer potential via asymptotic iteration method. Eclética Química, 45(1), 65-77. Crossref |
||||
Ikot, A. N., Okorie, U. S., Okon, I. B., Obagboye, L. F., Ahmadov, A. I., Abdullah, H. Y., Qadir, K., W., Udoh, M., E., & Onate, C. A. (2022). Thermal properties of 2D Schrödinger equation with new Morse interacting potential. The European Physical Journal D, 76(11), 1-19. Crossref |
||||
Ikot, A. N., Zarrinkamar, S., Yazarloo, B. H., & Hassanabadi, H. (2014b). Relativistic symmetries of Deng-Fan and Eckart potentials with Coulomb-like and Yukawa-like tensor interactions. Chinese Physics B, 23(10), 100306. Crossref |
||||
Inyang, E. P., Ikot, A. N., Akpan, I. O., Ntibi, J. E., Omugbe, E., & William, E. S. (2022). Analytic study of thermal properties and masses of heavy mesons with quarkonium potential. Results in Physics, 39, 105754. Crossref |
||||
Inyang, E. P., Ntibi, J. E., Inyang, E. P., Ayedun, F., Ibanga, E. A., Ibekwe, E. E., & William, E. S. (2021). Applicability of Varshni potential to predict the mass spectra of heavy mesons and its thermodynamic properties. Applied Journal of Physical Science, 3(3), 92-108. | ||||
Ixaru, L. G., De Meyer, H., & Berghe, G. V. (2000). Highly accurate eigenvalues for the distorted Coulomb potential. Physical Review E, 61(3), 3151. Crossref |
||||
Jeffreys, H. (1923). On certain approximate solutions of lineae differential equations of the second order. Proceedings of the London Mathematical Society, 2(1), 428-436. Crossref |
||||
Khordad, R., Edet, C. O., & Ikot, A. N. (2022). Application of Morse potential and improved deformed exponential-type potential (IDEP) model to predict thermodynamics properties of diatomic molecules. International Journal of Modern Physics C, 33(08), 2250106. Crossref |
||||
Kramers, H. A. (1926). Wellenmechanik und halbzahlige Quantisierung. Zeitschrift für Physik, 39(10-11), 828-840. Crossref |
||||
Kumar, R., & Chand, F. (2013). Asymptotic study to the N-dimensional radial Schrödinger equation for the quark-antiquark system. Communications in Theoretical Physics, 59(5), 528-539. Crossref |
||||
Maksimenko, N. V., & Kuchin, S. M. (2011). Determination of the mass spectrum of quarkonia by the Nikiforov-Uvarov method. Russian Physics Journal, 54(1), 57-65. Crossref |
||||
Ngiangia, A., T., Orukari, M. A., & Jim-George, F. (2018). Application of JWKB method on the effect of magnetic field on alpha decay. Asia Research Journal of Mathematics, 10(4), 1-9 Crossref |
||||
Ni, G., & Chen, S. (2002). Advanced quantum mechanics. Rinton Press USA. p. 312. | ||||
Okorie, U. S., Ibekwe, E. E., Ikot, A. N., Onyeaju, M. C., & Chukwuocha, E. O. (2018). Thermodynamic properties of the modified Yukawa potential. Journal of the Korean Physical Society, 73, 1211-1218. Crossref |
||||
Rodgers, C. T. (2009). Magnetic field effects in chemical systems. Pure and Applied Chemistry, 81(1), 19-43. Crossref |
||||
Sadeghi, J. (2007). Factorization method and solution of the non-central modified Kratzer potential. Acta Physica Polonica A, 112(1), 23-28. Crossref |
||||
Sandin, P., Ögren, M., & Gulliksson, M. (2016). Numerical solution of the stationary multicomponent nonlinear Schrödinger equation with a constraint on the angular momentum. Physical Review E, 93(3), 033301. Crossref |
||||
Steiner, U. E., & Ulrich, T. (1989). Magnetic field effects in chemical kinetics and related phenomena. Chemical Reviews, 89(1), 51-147. Crossref |
||||
Tiwari, S., Tandon, P., & Uttam, K. N. (2012). Thermodynamical quantities of chalcogenide dimers (O2, S2, Se2, and Te2) from spectroscopic data. Journal of Spectroscopy, Volume 2013, Article ID 956581, 6 pages. Crossref |
||||
Wentzel, G. (1929). Eine verallgemeinerung der quantenbedingungfur die zweeke der wallenmechanik, Zeits. Fur Physik, 39, 518-529. Crossref |
||||
Yazarloo, B. H., & Mehraban, H. (2016). Study of B and mesons with a Coulomb plus exponential type potential. Europhysics Letters, 116(3), 31004. Crossref |
||||
Zettili, N. (2001). Quantum mechanics: Concepts and applications. John Wiley and Sons, LTD. New York. p. 340. |