APPLIED JOURNAL OF PHYSICAL SCIENCE
Integrity Research Journals

ISSN: 2756-6684
Model: Open Access/Peer Reviewed
DOI: 10.31248/AJPS
Start Year: 2018
Email: ajps@integrityresjournals.org


Thermal properties of coulomb-type potentials in a magnetic field using the Phase – Integral model

https://doi.org/10.31248/AJPS2022.086   |   Article Number: BEBC5AF02   |   Vol.5 (1) - February 2023

Received Date: 21 December 2022   |   Accepted Date: 27 January 2023  |   Published Date: 28 February 2023

Authors:  Alalibo T. Ngiangia* , Okechukwu Amadi and Tombotamunoa W. Jim-Lawson

Keywords: Entropy, integer decrease, JWKB method, radial Schrodinger equation, reduced parameters, Thermodynamic functions.

The work examined some Coulomb-type potentials under the influence of magnetic field potential and some select thermodynamic functions. The combination of the chosen Coulomb-type potentials and the magnetic field formed the generalized potentials which were put into the time independent radial Schrodinger equation and solution for the energy eigenvalues obtained using the Phase – Integral model. Four thermodynamic functions were considered and the results showed that an increase in the reduced parameters and magnetic field brings about a depreciation of the generalized potentials and the thermodynamic functions as well as the removal of degeneracy and integer decrease in the energy eigenvalues. The study also showed the change of the property of entropy in the classical domain as it enters the quantum mechanical system.

Abu-Shady, M. (2015). Heavy quarkonia and Bc-mesons in the cornell potential with harmonic oscillator potential in the N-dimensional Schrodinger equation. International Journal of Applied Mathematics and Theoretical Physics, 2(2), 16-20.
 
Al-Oun, A., Al-Jamel, A., & Widyan, H. (2015). Various properties of heavy quarkonia from Flavor-Independent Coulomb plus quadratic potential. Jordan Journal of Physics, 8(4), 199-203.
 
Amadi, P. O., Ikot, A. N., Ngiangia, A. T., Okorie, U. S., Rampho, G. J., & Abdullah, H. Y. (2020). Shannon entropy and Fisher information for screened Kratzer potential. International Journal of Quantum Chemistry, 120(14), e26246.
Crossref
 
Berkdemir, C., Berkdemir, A., & Han, J. (2006). Bound state solutions of the Schrödinger equation for modified Kratzer's molecular potential. Chemical Physics Letters, 417(4-6), 326-329.
Crossref
 
Brillouin, L. (1926). The undulatory mechanics of Schrodinger. Compt Rend Academy of Science, Paris, 183, 270-271.
Crossref
 
Budaca, R. (2016). Bohr Hamiltonian with an energy-dependent unstable Coulomb - like potential. The European Physical Journal A, 52(10), 314.
Crossref
 
Ciftci, H., & Kisoglu, H. F. (2018). Nonrelativistic Arbitrary-States of Quarkonium through Asymptotic Iteration Method. Advances in High Energy Physics, Volume 2018, Article ID 4549705, 7 pages.
Crossref
 
Chaudhuri, R. N., & Mondal, M. (1995). Eigenvalues of anharmonic oscillators and the perturbed Coulomb problem in N-dimensional space. Physical Review A, 52(3), 18501859.
Crossref
 
De, R., Dutt, R., & Sukhatme, U. (1992). Mapping of shape invariant potentials under point canonical transformations. Journal of Physics A: Mathematical and General, 25(13), L843.
Crossref
 
Edet, C. O., Okorie, U. S., Ngiangia, A. T., & Ikot, A. N. (2020). Bound state solutions of the Schrodinger equation for the modified Kratzer potential plus screened Coulomb potential. Indian Journal of Physics, 94, 425-433.
Crossref
 
Filip, P. (2015, July). Decay of resonaces in strong magnetic field. In Journal of Physics: Conference Series (Vol. 636, No. 1, p. 012013). IOP Publishing.
Crossref
 
Froman, N., & Froman P., O. (1965). JWKB Approximations: Contributions to the theory. North Holland Publishing Company, Amsterdam. p. 43.
 
Ghatak, A., & Lokanathan, S. (2002) Quan.tum mechanics: Theory and applications (Fourth Edition). Macmillan India Limited, New Delhi. Pp. 371-377.
 
Ghatak, A. K., Gallawa, R. L., & Goyal, I. C. (1991). Modified Airy function and WKB solutions to the wave equation. NASA STI/Recon Technical Report N, 92, 20427.
Crossref
 
Ghatak, A. K., Sauter, E. G., & Goyal, I. C. (1997). Validity of the JWKB formula for a triangular potential barrier. European Journal of Physics, 18(3), 199-204.
Crossref
 
Griffiths, D., J. (2005). Introduction to quantum mechanics. Pearson Education Inc. New Jersey. p. 275
 
Hamzavi, M., Ikhdair, S. M., & Thylwe, K. E. (2013). Equivalence of the empirical shifted Deng-Fan oscillator potential for diatomic molecules. Journal of Mathematical Chemistry, 51, 227-238.
Crossref
 
Hassanabadi, H., Chung, W. S., Zare, S., & Bhardwaj, S. B. (2017). -deformed morse and oscillator potential. Advances in High Energy Physics, Volume 2017, Article ID 1730834, 4 pages.
Crossref
 
Hassanabadi, H., Ikot, A., & Zarrinkamar, S. (2014). Exact solution of Klein-Gordon with the Pöschl-Teller double-ring-shaped Coulomb potential. Acta Physica Polonica A, 126(3), 647-651.
Crossref
 
Hayashi, H. (2004). Introduction to dynamic spin chemistry: Magnetic field effects on chemical and biochemical reactions (Vol. 8). World Scientific.
Crossref
 
Heading, J. (1962). An introduction to phase - Integral methods. MMathuen and Co. London. Pp. 18-20
 
Ibekwe, E. E., Ngiangia, A. T., Okorie, U. S., Ikot, A. N., & Abdullah, H. Y. (2020). Bound State Solution of Radial Schrodinger Equation for the Quark-Antiquark Interaction Potential. Iranian Journal of Science and Technology, Transactions A: Science, 44, 1191-1204.
Crossref
 
Ikhdair, S. M., & Sever, R. (2009). Exact quantization rule to the Kratzer-type potentials: an application to the diatomic molecules. Journal of Mathematical Chemistry, 45, 1137-1152.
Crossref
 
Ikhdair, S. M. (2011). On the bound-state solutions of the Manning-Rosen potential including an improved approximation to the orbital centrifugal term. Physica Scripta, 83(1), 015010.
Crossref
 
Ikhdair, S. M., Falaye, B. J., & Hamzavi, M. (2015). Nonrelativistic molecular models under external magnetic and AB flux fields. Annals of Physics, 353, 282-298.
Crossref
 
Ikot, A. N., Antia, A. D., Akpabio, L. E., & Obu, J. A. (2011). Analytical solution of Schrödinger equation with two-dimensional harmonic potential in cartesian and polar co-ordinates via Nikiforov-Uvarov methods. Journal of Vectorial Relativity, 6, 65-76.
 
Ikot, A. N., Chukwuocha, E. O., Onyeaju, M. C., Onate, C. A., Ita, B. I., & Udoh, M. E. (2018). Thermodynamics properties of diatomic molecules with general molecular potential. Pramana Journal of Physics, 90, 22-30.
Crossref
 
Ikot, A., Isonguyo, C., Chad-Umoren, Y., & Hassanabadi, H. (2015). Solution of spinless salpeter equation with generalized hulthén potential using SUSYQM. Acta Physica Polonica A, 127(3), 674-677.
Crossref
 
Ikot, A. N., Isonguyo, C. N., Olisa, J. D., & Obong, H. P. (2014a). Pseudospin Symmetry of the Position-Dependent Mass Dirac Equation for the Hulthén Potential and Yukawa Tensor Interaction. Atom Indonesia, 40(3), 149-155.
Crossref
 
Ikot, A. N., Okorie, U., Ngiangia, A. T., Onate, C. A., Edet, C. O., Akpan, I. O., & Amadi, P. O. (2020). Bound state solutions of the Schrödinger equation with energy-dependent molecular Kratzer potential via asymptotic iteration method. Eclética Química, 45(1), 65-77.
Crossref
 
Ikot, A. N., Okorie, U. S., Okon, I. B., Obagboye, L. F., Ahmadov, A. I., Abdullah, H. Y., Qadir, K., W., Udoh, M., E., & Onate, C. A. (2022). Thermal properties of 2D Schrödinger equation with new Morse interacting potential. The European Physical Journal D, 76(11), 1-19.
Crossref
 
Ikot, A. N., Zarrinkamar, S., Yazarloo, B. H., & Hassanabadi, H. (2014b). Relativistic symmetries of Deng-Fan and Eckart potentials with Coulomb-like and Yukawa-like tensor interactions. Chinese Physics B, 23(10), 100306.
Crossref
 
Inyang, E. P., Ikot, A. N., Akpan, I. O., Ntibi, J. E., Omugbe, E., & William, E. S. (2022). Analytic study of thermal properties and masses of heavy mesons with quarkonium potential. Results in Physics, 39, 105754.
Crossref
 
Inyang, E. P., Ntibi, J. E., Inyang, E. P., Ayedun, F., Ibanga, E. A., Ibekwe, E. E., & William, E. S. (2021). Applicability of Varshni potential to predict the mass spectra of heavy mesons and its thermodynamic properties. Applied Journal of Physical Science, 3(3), 92-108.
 
Ixaru, L. G., De Meyer, H., & Berghe, G. V. (2000). Highly accurate eigenvalues for the distorted Coulomb potential. Physical Review E, 61(3), 3151.
Crossref
 
Jeffreys, H. (1923). On certain approximate solutions of lineae differential equations of the second order. Proceedings of the London Mathematical Society, 2(1), 428-436.
Crossref
 
Khordad, R., Edet, C. O., & Ikot, A. N. (2022). Application of Morse potential and improved deformed exponential-type potential (IDEP) model to predict thermodynamics properties of diatomic molecules. International Journal of Modern Physics C, 33(08), 2250106.
Crossref
 
Kramers, H. A. (1926). Wellenmechanik und halbzahlige Quantisierung. Zeitschrift für Physik, 39(10-11), 828-840.
Crossref
 
Kumar, R., & Chand, F. (2013). Asymptotic study to the N-dimensional radial Schrödinger equation for the quark-antiquark system. Communications in Theoretical Physics, 59(5), 528-539.
Crossref
 
Maksimenko, N. V., & Kuchin, S. M. (2011). Determination of the mass spectrum of quarkonia by the Nikiforov-Uvarov method. Russian Physics Journal, 54(1), 57-65.
Crossref
 
Ngiangia, A., T., Orukari, M. A., & Jim-George, F. (2018). Application of JWKB method on the effect of magnetic field on alpha decay. Asia Research Journal of Mathematics, 10(4), 1-9
Crossref
 
Ni, G., & Chen, S. (2002). Advanced quantum mechanics. Rinton Press USA. p. 312.
 
Okorie, U. S., Ibekwe, E. E., Ikot, A. N., Onyeaju, M. C., & Chukwuocha, E. O. (2018). Thermodynamic properties of the modified Yukawa potential. Journal of the Korean Physical Society, 73, 1211-1218.
Crossref
 
Rodgers, C. T. (2009). Magnetic field effects in chemical systems. Pure and Applied Chemistry, 81(1), 19-43.
Crossref
 
Sadeghi, J. (2007). Factorization method and solution of the non-central modified Kratzer potential. Acta Physica Polonica A, 112(1), 23-28.
Crossref
 
Sandin, P., Ögren, M., & Gulliksson, M. (2016). Numerical solution of the stationary multicomponent nonlinear Schrödinger equation with a constraint on the angular momentum. Physical Review E, 93(3), 033301.
Crossref
 
Steiner, U. E., & Ulrich, T. (1989). Magnetic field effects in chemical kinetics and related phenomena. Chemical Reviews, 89(1), 51-147.
Crossref
 
Tiwari, S., Tandon, P., & Uttam, K. N. (2012). Thermodynamical quantities of chalcogenide dimers (O2, S2, Se2, and Te2) from spectroscopic data. Journal of Spectroscopy, Volume 2013, Article ID 956581, 6 pages.
Crossref
 
Wentzel, G. (1929). Eine verallgemeinerung der quantenbedingungfur die zweeke der wallenmechanik, Zeits. Fur Physik, 39, 518-529.
Crossref
 
Yazarloo, B. H., & Mehraban, H. (2016). Study of B and mesons with a Coulomb plus exponential type potential. Europhysics Letters, 116(3), 31004.
Crossref
 
Zettili, N. (2001). Quantum mechanics: Concepts and applications. John Wiley and Sons, LTD. New York. p. 340.