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ABSTRACT: The work examined some Coulomb-type potentials under the influence of magnetic field potential and some 
select thermodynamic functions. The combination of the chosen Coulomb-type potentials and the magnetic field formed 
the generalized potentials which were put into the time independent radial Schrodinger equation and solution for the 
energy eigenvalues obtained using the Phase – Integral model. Four thermodynamic functions were considered and the 
results showed that an increase in the reduced parameters and magnetic field brings about a depreciation of the 
generalized potentials and the thermodynamic functions as well as the removal of degeneracy and integer decrease in 
the energy eigenvalues. The study also showed the change of the property of entropy in the classical domain as it enters 
the quantum mechanical system. 
 
Keywords: Entropy, integer decrease, JWKB method, radial Schrodinger equation, reduced parameters, Thermodynamic 
functions. 
 
 
INTRODUCTION 
 
Central potentials in quantum mechanics play a leading 
role in the prediction of physical fields, but no generalized 
potentials is capable of describing all quantum mechanical 
systems. As more potentials and their modifications 
develop to tackle existing problems, several other 
problems are also identified. Therefore, the formulation of 
potentials and several of their modifications is an ongoing 
practice and cannot be overemphasized. The use of the 
Coulomb–type potential was reported in the work of Ikot et 
al. (2014a). Maksimenko and Kuchin (2011) examined a 
combination of the harmonic oscillator, a linear potential 
and a Coulomb potential using the Nikiforov – Uvarov 
method to obtain the energy eigenvalues and wave 
function for large and small distances between particles in 
the bound state.  A coulomb plus quadratic potential in a 
non – relativistic potential model was examined by Al-Oun 
et al. (2015) and characteristics of heavy quarkonia were 
discussed. Coulomb plus exponential type potential was 
examined by Yazarloo and Mehraban (2016) and results 
are in general,  compactible  with  the  literatures  cited. An 

approximate analytical solution of the radial Schrodinger 
equation for the screened coulomb potential was obtained 
including the energy eigenvalues and the corresponding 
eigenfunctions by Budaca (2016). Edet et al. (2019) 
studied modified Kratzer potential plus screened Coulomb 
potential for the bound state solutions of the radial 
Schrodinger equation and some special cases were 
considered. Hassanabadi et al. (2014) published an exact 
solution of Klein–Gordon with the Posch Teller double–
ring–shaped coulomb potential and suggested that the 
work can be applied in quantum chemistry and nuclear 
physics with requisite modifications. The study went 
further to state that the central potential failed to 
adequately study deformed nuclei and the molecular 
configuration of benzenes. Some of the studies have 
undergone several modifications and additions. Few are 
screened Kratzer potential (Ikhdair, 2009), Energy 
dependent molecular Kratzer potential (Ikot et al., 2020), 
Hellman potential and modified Kratzer potential (Edet et 
al., 2019), Modified Kratzer molecular potential (Berkdemir  
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et al., 2006), Screened Kratzer potential (Amadi et al., 
2020) and many more. Different methods and approach 
were used to investigate the different configurations of the 
potentials. Owing to the present of the centrifugal term or 
the nature of the effective potentials, the resulting 
Schrodinger equation, poses a challenge for closed form 
solutions. Though few exist for harmonic oscillators and 
hydrogen atoms, many approximate methods are 
abounded. The methods include but not limited to the point 
canonical transformation method (Abu-Shady, 2015), the 
Nikifarov-Uvarov method (De et al., 1992; Ikot et al., 2011), 
the numerical methods (Hassanabadi et al., 2017; Ixaru et 
al., 2000), the asymptotic iteration method (Sandin et al., 
2016; Ciftci and Kisoglu, 2018), the super symmetry 
quantum mechanics (Ikhdair, 2011; Hamzavi et al., 2013), 
the factorization method (Ikot et al., 2015; Sadeghi, 2007), 
the Hill determinant method (Okorie et al., 2018), the 
phase - integral or JWKB method (Chaudhuri and Mondal, 
1995; Ghatak et al., 1997; Ngiangia et al., 2018; Heading, 
1962) and the series solution method (Ghatak et al., 1991; 
Kumar and Fakir, 2013). Since magnetic field is 
everywhere in the universe, its effect on other potentials 
are abounded. According to Ibekwe et al. (2020) and Ni 
and Chen (2002), the superconductivity state of an 
element or compound is reversed if it is introduced in the 
vicinity of a strong magnetic field strength. In like manner, 
it is suggested that a doped semiconductor material can 
returned to non-conductor by the influence of strong 
magnetic field. Filip (2015) observed that magnetic field 
alter the decay of resonance. Steiner and Ulrich (1989), in 
their study opined that the magnetic field influences the 
kinetics of the compound under consideration. Hayashi, 
(2004) stated that electron spin is affected by the presence 
of magnetic field. Ikhdair et al. (2015) examined molecular 
models under external magnetic field. Following the trend 
of investigations of the different types of potentials and 
their   modifications,  the  authors  intend  to  use  the JWKB  

 
 
 
 
approximation method. The method started with the name 
WKB approximation method, named after the Wentzel, 
Kramers and Brillouin. However, in the book published by 
Froman and Froman (1965), they used the acronym 
JWKB. In the work of Froman and Fromam (1965), they 
also used the JWKB method in the validity for a triangular 
barrier. Ghatak and Lokanathan (2002) took a step further 
to explain that Jeffreys (1923), published an article entitled 
‘On certain approximate solutions of linear differential 
equations of second order and its connection formulae’. 
The application of JWKB solutions to problems in quantum 
mechanics came much later and was given by Wentzel 
(1929), Kramers (1926) and Brillouin (1926). Froman and 
Froman (1965) felt that since the solutions were first put 
forward by Wentzel (1929), it should be referred to as the 
JWKB method. 

Thermodynamic properties are readily obtained from the 
partition function. The concept of the partition function is 
applicable in areas of chemical–physics challenges 
involving gases at different temperatures (Tiwari et al., 
2012). Some thermodynamic functions such as entropy, 
specific heat, internal energy, and Helmholtz free energy 
have been studied using different potentials by authors. 
Some include Inyang et al. (2022), Khordad et al. (2022), 
Ikot et al. (2022), Ikot et al. (2018) and Inyang et al. (2021). 
Therefore, the aim of this study is to consider the 
thermodynamic functions on the proposed generalized 
potential in equation (7) which is an aggregate of some 
potential models of the type that contains the internuclear 

separation of the form 
r

1
 ,  

2

1

r
  or both  which fall into the 

category of the Coulomb–type potentials and in particular 
examine the effect of the reduced terms and the magnetic 
field on generalized potentials and the special cases. This 
the authors believed will add to existing literatures. 

 
 
THEORY OF COULOMB–TYPE POTENTIALS 
   

According to Zettili (2001), the interaction between the electron and the proton as described by the Coulomb potential is 
stated as: 
 

r

zz
rV

21)( −=          (1) 

 

Where 
1z and 

2z are projectile element and target element respectively,   is the coulomb constant and r represents the 

magnitude of the distance between the two particles. 
 

The Coulomb potential has been used extensively in the study of hydrogen and its isotopes as well as many body 
problems. In the study of the radioactive decay of alpha particles, the potential as reported by Ghatak and Lokanathan 
(2002) is 
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Z
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Where Z is the atomic number of the daughter element. 
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It is reported that the Kratzer potential developed in 1934 which can be applied to gravitational and coulomb interactions, 
can be stated as (Hassanabadi et al. 2014) 

 

2

1)(
r

B

r

A
rV +=          (3) 

 

Where A and 
1B  are potential parameters.  

 
Following the Poschl – Teller double – ring – shaped coulomb potential as reported by Hassanabadi et al. (2014), it is 
stated as: 
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Where  , b and 
1A  are potential parameters.  

 
A thought is introduced, where the angular term is reduced to a rectangular or scalar term. The essence which may have 
chemical physics and nuclear physics prediction is also to examine the effect of such reduction or transformation with the 
main potential counterpart. The proposed potential reduction takes the form 
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Where  and g are reduced adjustable parameters to gauge the level of effect. 

 

It is expected that if 11 =A , then the reduced Hartmann potential results 
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Having studied equations (1), (2), (3). (5) and (6), a modified generalized potential with the inclusion of magnetic field 
potential is stated as 
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Where q is the charge of electron, B is the magnetic induction, m is the magnetic quantum number and  is the Planck’s 
constant.  

 
 
Radial Schrödinger Equation with the effective potential 
 
The potential is symmetric, therefore, the Schrodinger equation in spherical coordinate is suitable. However, the radial 
part of the Schrodinger equation in spherical coordinate is employed because the angular and azimuthal parts, play no 
role in the description of the potential considered. The work therefore, considered the radial Schrodinger equation of the 
form 
 
1
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(𝐸 − 𝑉(𝑟) −
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2𝜇𝑟2
) = 0      (8) 

 

Where l  is the orbital quantum number and E is the energy eigenvalues of the system. 

 
Equation (7) is put into equation (8) and the result is 
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To apply the phase–integral or the JWKB method, a new radial function is defined as 
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Equation (10) is put into equation (9) and after simplification, reduced to 
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The quantization of the energy levels of the bound states for potential wells with no rigid walls (Zettili, 2001) is given by 
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The value of k(r) is put into equation (12) and simplify, results into the form 
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If  
1r  and 

2r  are the roots of the polynomial 21

2  −+− rr , then 
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Also, following the symmetric properties of roots of polynomial expression 
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In the work of Griffiths (2005), a standard integral of the form stated below was used. 
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Using equation (17), equation (13) takes the form 
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Similarly, using equation (15), equation (18) boils down to 
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And finally, using equation (16), equation (19) is simplified to the form 
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Putting back the values of  
1  and 

2  into equation (20) and simplify, the energy eigenvalues takes the form 
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Energy eigenvalues of the special cases 
 

The special cases are in the absence of the other potentials under consideration. 

Coulomb potential; adjustment of parameters, )1,0( 11 ====== AbBZA   reduced equation (21) to 
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In the absence of the magnetic field term, the expression is in agreement with the work of Zettili (2001) 
 

Alpha decay potential; )1,0( 1121 ====== AbBzzA   , equation (21) reduced to 

  

( )

( )( ) 2

2

2

2

,

2

1
12

2

2












+−+−

−
+−=

nll

ZqBm
E ln




     (23) 

 

The expression is the same with the work of Ngiangia et al. (2018) 
 

Reduced Hartmann potential; )1,0( 1121 ====== AbBZzzA , equation (21) takes the form 
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Reduced Poschl – Teller double – ring – shaped coulomb potential; ),0( 121 ===== bBzzZA , equation (21) 

results in 
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Kratzer potential; )1,0( 121 ===== AbzzZ , equation (21) is expressed as 

  

( )

( ) 2

22

2

,

2

1

2

1
4

2














+−







 +
−

−
+−=

n
ll

B

AqBm
E ln







     (26) 

 
In the absence of the magnetic field term, the expression is consistent with the work of Ibekwe et al. (2020). 
 
 

Thermodynamic functions 
 
To describe the thermodynamic properties of the system, the grand partition function of ensemble of particles 
determination is of necessity. The partition function is a statistical measure of the extent to which energy is distributed 
among the different states of a system or molecules and a function of the degeneracy of the system (Tiwari et al., 2012). 
The partition function of an ensemble of a quantum mechanical system is given as 
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Where 
Bk  is the Boltzmann constant and T is the temperature of the system. 

 

The thermodynamic functions whose properties to be considered for the description of the energy eigenvalues of the 
coulomb–type potential are; Helmholtz free energy F(T), internal energy U(T), entropy S(T) and the specific heat at 

constant volume )(TCV .  

 
The Helmholtz free energy is determined by the relation 
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The internal energy is stated as 
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The entropy is of the form 
  

3

,2)(
)(

T

E

T

TF
kTS

ln

B =



−=         (30) 

 

The specific heat at constant volume results in 
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RESULTS AND DISCUSSION 
 
Table 1 shows the relationship between the quantum 
numbers and the energy eigenvalues. As the quantum 
numbers increase, degeneracy is completely removed 
with integer decrease in the allowed energy values for the 
generalized potential. This is true because several studies 
are abounded in the removal of degeneracy of a system. If 
the effective potential is not zero, degeneracy may be 
removed completely (Ikot et al 2014b) or partially as the 
case of Zeeman effect. 

Table 2 displays the values of the energy eigenvalues 
for the reduced Poschl – Teller – ring – shaped Coulomb 
potential. It reveals that degeneracy is not only removed 
but the energy eigenvalues decreased. 

Table 3 is the results of the eigenvalues of the reduced 
Hartmann potential. The results reveal that integer 
decrease is observed in the values of the energy 
eigenvalues and degeneracy removed. 

Figures 1 to 3 showed that as the reduced parameters 

  and g and the magnetic field potential B increased, the 

generalized potential depreciates which explained that the 
parameters are decaying potentials. 

Figures 4 to 6 showed that an increase in the reduced 

parameters  ,  g and B, result in the decrease of the 

reduced Poschl – Teller – ring – shaped Coulomb 
potential. The reason is that, the considered parameters 
offers resistance to the potential under consideration. 

Figures 7 and 8 showed that an enhanced   and B 

parameters, depreciate the reduced Hartmann potential. 
Figures 9 to 11 show an increase in the reduced 

parameters and the magnetic field could not break the 
energy barrier of the Helmholtz free energy under the 
given temperature condition. As a result, the Helmholtz 

free energy F(T) depreciate as the  ,  g and B parameters 

are enhanced. 
The thermodynamic internal energy U(T) decreased as 

the  ,  g and B are increased as shown in Figures 12 to 

14. 

The entropy S(T) is reduced as the  ,  g and B 

parameters are increased as reported in Figures 15 to 17. 
The graphs saturated abruptly because the considered 
parameters were able to decrease the entropy and by 
extension reduce the internal energy of the system. This 
result is in agreement with the work of Rogers (2009), 
where it was reported that the rate of yield of products in 
chemical reaction is enhanced in the presence of magnetic 
field. This result is in conflict with the additive property of 
entropy in classical systems. 

The  ,  g and B parameters increase as shown in 

Figures 18 to 20, reveal that the specific heat at constant 

volume )(TCV  decreases and in turn reduce the internal 

energy. 
For the reduced Poschl – Teller – ring – shaped 

Coulomb potential, an increase in  ,  g and B parameters 

lead   to    a    decrease    in   the   thermodynamic   functions  

Table 1. Energy (J) values obtained from equation (21),

TxB 19105.0= , Cxq 1910602.1 −= , 

11 ======  bAB , 4.0= , 6.0=g
2281030662.2 Nmx −= , 21 =A , 421 =zz , Z = 90. 

 

m n l  lnE ,  

1 

0 0 -11.4561 

   

1 0 -13.4561 

   

2 
0 -17.4561 

1 -18.4561 

   

3 

0 -23.4561 

1 -24.4561 

2 -26.4561 

   

4 

0 -31.4561 

1 -32.4561 

2 -34.4561 

3 -37.4561 

   

5 

0 -41.4561 

1 -42.4561 

2 -44.4561 

3 -47.4561 

4 -51.4561 

 
 
 

of F(T), U(T), S(T) and )(TCV  as shown in Figures 21 to 

32. These observations showed that the thermodynamic 
functions are unsaturated and their energy barrier 
unstable. 

Figures 33 to 40 displayed the effect of increase of the 

g  and B  parameters on the thermodynamic functions of 

F(T), U(T), S(T) and )(TCV  within the framework of the 

reduced Hartmann potential. The results showed that only 
in Figure 38 that the entropy is correspondingly increases 
otherwise a decrease is observed in all. The result of 
Figure 38 is accidental because in quantum mechanical 
system, the additive property of entropy is violated. 

The exclusion of the results and discussion of coulomb 
potential (Zettili 2001), alpha decay potential in magnetic 
field (Ngiangia et al., 2018), Kratzer potential (Ibekwe et al. 
2020) were deliberate. The reason is that, the mentioned 
potentials have been discussed in the cited literatures, 
though Zettili (2001) and Ibekwe (2020) did not consider 
magnetic field, Ngiangia (2018) did but they were added to 
show the dexterity of the Phase- Integral model which is in 
line with the objective of this study. 
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Table 2. Energy (J) values of Reduced Poschl – Teller double - 
ring – shaped coulomb potential obtained from equation (25), 

TxB 19105.0= , Cxq 1910602.1 −= , 1====  b

, 4.0= , 6.0=g , 21 =A . 

 

m n l  lnE ,  

1 

0 0 -3.41439 

   

1 0 -3.91439 

   

2 
0 -4.91439 

1 -5.16439 

   

3 

0 -6.41439 

1 -6.66439 

2 -7.16439 

   

4 

0 -8.41439 

1 -8.66439 

2 -9.16439 

3 -9.91439 

   

5 

0 -10.9144 

1 -11.1644 

2 -11.6644 

3 -12.4144 

4 -13.4144 
 
 
 

Table 3. Energy (J) values of Reduced Hartmann potential 

obtained from equation (24), TxB 19105.0= , 

Cxq 1910602.1 −= , 1====  b , 4.0= . 

 

m n l  lnE ,  

1 

0 0 -2.0255 

   

1 0 -2.5255 

   

2 
0 -3.5255 

1 -3.7755 

   

3 

0 -5.0255 

1 -5.2755 

2 -5.7755 

   

4 

0 -7.0255 

1 -7.2755 

2 -7.7755 

3 -8.5255 

 
 
 
 
 

Table 3. Contd.  
 

 5 

𝟎 -9.5255 

1 -9.7755 

2 -10.2755 

3 -11.0255 

4 -12.0255 
 
 
 

 
 

Figure 1. Plot of generalized potential as a function of the 

radius with  parameter varying. 
 
 
 

 
 

Figure 2. Plot of generalized potential as a function of the 
radius with g parameter varying. 

 
 
 

 
 

Figure 3. Plot of generalized potential as a function of the 
radius with magnetic field potential varying. 



 

 
 
 
 

 
  

Figure 4. Plot of generalized potential ( )01 === BA  

as a function of the radius with magnetic field varying. 
 
 

 
 

Figure 5. Plot of generalized potential ( )01 === BA  

as a function of the radius with  parameter varying. 

 
 
 

 
 

Figure 6. Plot of generalized potential ( )01 === BA  as 

a function of the radius with g parameter varying. 
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Figure 7. Plot of generalized potential ( )011 ==== ABA  

as a function of the radius with magnetic field varying. 
 
 
 

 
 

Figure 8. Plot of generalized potential ( )011 ==== ABA  

as a function of the radius with  parameter varying. 
 
 
 

 
 

Figure 9. Plot of Helmholtz Free Energy as a function of 

temperature with  parameter varying. 
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Figure 10. Plot of Helmholtz Free Energy as a function 
of temperature with g parameter varying. 

 
 
 

 
 

Figure 11. Plot of Helmholtz Free Energy as a function of 
temperature with B parameter varying. 

 
 
 

 
 

Figure 12. Plot of Internal Energy as a function of 
temperature with B parameter varying. 

 
 
 

 
 

Figure 13. Plot of Internal Energy as a function of 

temperature with   parameter varying. 

 
 
 

 
 

Figure 14. Plot of Internal Energy as a function of 
temperature with g parameter varying. 

 
 
 

 
 

Figure 15. Plot of Entropy as a function of temperature 
with g parameter varying. 

 
 
 

 
 

Figure 16. Plot of Entropy as a function of temperature 

with   parameter varying. 
 
 
 

 
 

Figure 17. Plot of Entropy as a function of temperature 
with B parameter varying. 



 

 
 
 

 
 

Figure 18. Plot of Specific heat at constant volume as a 

function of temperature with B parameter varying. 
 
 
 

 
 

Figure 19. Plot of Specific heat at constant volume as a 

function of temperature with   parameter varying. 
 
 
 

 
 

Figure 20. Plot of Specific heat at constant volume as a 
function of temperature with g parameter varying. 

 
 
 

 
 

Figure 21. Plot of Specific heat at constant volume of reduced 
Poschl – Teller double – ring – shaped Coulomb potential as 
a function of temperature with g parameter varying. 
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Figure 22. Plot of Specific heat at constant volume of reduced 
Poschl – Teller double – ring – shaped Coulomb potential as 

a function of temperature with   parameter varying. 

 
 
 

 
 

Figure 23. Plot of Specific heat at constant volume of reduced 
Poschl – Teller double – ring – shaped Coulomb potential as 
a function of temperature with B parameter varying. 

 
 
 

 
 

Figure 24. Plot of Entropy of reduced Poschl – Teller 
double – ring – shaped Coulomb potential as a 
function of temperature with B parameter varying. 

 
 
 

 
 

Figure 25. Plot of Entropy of reduced Poschl – Teller 
double – ring – shaped Coulomb potential as a 
function of temperature with g parameter varying. 
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Figure 26. Plot of Entropy of reduced Poschl – Teller double 
– ring – shaped Coulomb potential as a function of 

temperature with  parameter varying. 
 
 
 

 
 

Figure 27. Plot of Internal energy of reduced Poschl – 
Teller double – ring – shaped Coulomb potential as a 

function of temperature with  parameter varying. 
 
 
 

 
 

Figure 28. Plot of Internal energy of reduced Poschl – 
Teller double – ring – shaped Coulomb potential as a 
function of temperature with g parameter varying. 

 
 
 

 
 

Figure 29. Plot of Internal energy of reduced Poschl – 
Teller double – ring – shaped Coulomb potential as a 
function of temperature with B parameter varying. 

 
 
 

 
 

Figure 30. Plot of Helmholtz free energy of reduced Poschl – 
Teller double – ring – shaped Coulomb potential as a function 
of temperature with B parameter varying. 

 
 
 

 
 

Figure 31. Plot of Helmholtz free energy of reduced Poschl 
– Teller double – ring – shaped Coulomb potential as a 
function of temperature with g parameter varying. 

 
 
 

 
 

Figure 32. Plot of Helmholtz free energy of reduced 
Poschl – Teller double – ring – shaped Coulomb potential 

as a function of temperature with  parameter varying. 
 
 
 

 
 

Figure 33. Plot of Helmholtz free energy of reduced Hartmann 

potential as a function of temperature with  parameter varying. 



 

 
 
 

 
 

Figure 34. Plot of Helmholtz free energy of reduced Hartmann 
potential as a function of temperature with B parameter varying. 

 
 
 

 
 

Figure 35. Plot of Internal energy of reduced Hartmann potential 
as a function of temperature with B parameter varying. 

 
 
 

 
 

Figure 36. Plot of Internal energy of reduced Hartmann potential 

as a function of temperature with  parameter varying. 
 
 
 

 
 

Figure 37. Plot of Entropy of reduced Hartmann potential as a 

function of temperature with  parameter varying. 
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Figure 38. Plot of Entropy of reduced Hartmann potential 
as a function of temperature with B parameter varying. 

 
 
 

 
 

Figure 39. Plot of Specific heat at constant volume of reduced 
Hartmann potential as a function of temperature with B 
parameter varying. 

 
 
 

 
 

Figure 40. Plot of Specific heat at constant volume of reduced 

Hartmann potential as a function of temperature with 
parameter varying. 

 
 
Conclusion 
 
The kernel of this study was to consider the reduced 

parameters ),( g  and the magnetic field potential in the 

Coulomb – type potentials. The coinage of the title of the 

study is a combination of 
r

1
 and 

2

1

r
 type potentials. 

Generally, the  presence  of  magnetic  field  potential  in a  
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given quantum mechanical system, destroyed or removed 
the degeneracy of the system which also laid credence to 
this study. The study also reveal that, the phase – Integral 
model can be used to tackle the determination of the 
eigenvalues and eigenfunctions of several combinations of 
the coulomb – type potentials in a single solution. The 
reduced parameters in the study, greatly affect not only the 
transformations but also added to existing works. Also, 
magnetic field is an indispensable factor in the study of 
classical and quantum mechanical systems. However, the 
JWKB method becomes handy in the description of 
Coulomb – like potentials as a whole owing to its simplicity  
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