JOURNAL OF PUBLIC HEALTH AND DISEASES
Integrity Research Journals

ISSN: 2705-2214
Model: Open Access/Peer Reviewed
DOI: 10.31248/JPHD
Start Year: 2018
Email: jphd@integrityresjournals.org


Expression of some resistant genes on six Elizabethkingia spp. strains isolated in Vietnam

https://doi.org/10.31248/JPHD2020.063   |   Article Number: 52D5D5523   |   Vol.3 (2) - April 2020

Received Date: 17 March 2020   |   Accepted Date: 22 April 2020  |   Published Date: 30 April 2020

Authors:  Hieu Duc Nguyen, , Son Thai Nguyen, , Van Thi Thu Ha , Minh Ngoc Nghiem and Thuy Thi Bich Vo*

Keywords: 16S rRNA, Elizabethkingia spp, multi-antimicrobial resistance, phylogeny, resistant gene expression, Reverse Transcriptase PCR.

This study focused on the assessment of the multiantibiotic-resistance and gene expression associated with multi-drug resistance in Elizabethkingia. Six Elizabethkingia spp. strains were isolated from patient samples, and the antibiotic-resistance of the six isolates with all 14 tested antibiotics was confirmed. MacConkey subculture and 16S rRNA sequencing were used to identify the six isolates as; one Elizabethkingia meningoseptica (E. meningoseptica) isolate, and five E. anophelis isolates. Seven genes including four-resistant genes (blaB, blaCME, ant6, lolD and catB and two antibiotics target gene (gyrA and parC) were selected for evaluation of gene expression using Reverse Transcriptase PCR (RT-PCR). The resistant genotype–phenotype correlation of β-lactams (blaB and blaCME) and fluoroquinolones (gyrA and parC) groups was observed. The chloramphenicol resistant gene (catB) was also found in all six isolates. The gene expression level was different between isolates but lacked the relationship with high resistant phenotypes. The aminoglycoside (ant6) and macrolide (lolD) resistant genes were absent, which indicated that other genetic factors could be implicated. The multidrug-resistance of Elizabethkingia spp. is reported for the first time in Vietnam, demonstrating the presence of this drug-resistance bacterium in the Vietnamese hospital environment. The initial results in this study will be the basis for further research regarding Elizabethkingia spp.

Bellais, S., Poirel, L., Naas, T., Girlich, D., & Nordmann, P. (2000). Genetic-biochemical analysis and distribution of the Ambler class A β-lactamase CME-2, responsible for extended-spectrum cephalosporin resistance in Chryseobacterium (Flavobacterium) meningosepticum. Antimicrobial Agents and Chemotherapy, 44(1), 1-9.
Crossref
 
Breurec, S., Criscuolo, A., Diancourt, L., Rendueles, O., Vandenbogaert, M., Passet, V., Caro, V., Rocha, E. P., Touchon, M., & Brisse, S. (2016). Genomic epidemiology and global diversity of the emerging bacterial pathogen Elizabethkingia anophelis. Scientific Reports, 6, 30379.
Crossref
 
Brown-Jaque, M., Calero-Cáceres, W., & Muniesa, M. (2015). Transfer of antibiotic-resistance genes via phage-related mobile elements. Plasmid, 79, 1-7.
Crossref
 
Ceyhan, M., & Celik, M. (2011). Elizabethkingia meningosepticum (Chryseobacterium meningosepticum) infections in children. International Journal of Pediatrics, Volume 2011, Article ID 215237, 7 pages.
Crossref
 
Chen, S., Soehnlen, M., Downes, F. P., & Walker, E. D. (2017). Insights from the draft genome into the pathogenicity of a clinical isolate of Elizabethkingia meningoseptica Em3. Standards in genomic sciences, 12, Article number 56.
Crossref
 
Fàbrega, A., Madurga, S., Giralt, E., & Vila, J. (2009). Mechanism of action of and resistance to quinolones. Microbial Biotechnology, 2(1), 40-61.
Crossref
 
Ferrer, M., Méndez-García, C., Rojo, D., Barbas, C., & Moya, A. (2017). Antibiotic use and microbiome function. Biochemical Pharmacology, 134, 114-126.
Crossref
 
Gokce, I. K., Oncel, M. Y., Ozdemir, R., Erdeve, O., Oguz, S. S., Canpolat, F. E., ... & Dilmen, U. (2012). Trimethoprim-sulfamethoxazole treatment for meningitis owing to multidrug-resistant Elizabethkingia meningoseptica in an extremely low-birthweight, premature infant. Paediatrics and International Child Health, 32(3), 177-179.
Crossref
 
González, L. J., & Vila, A. J. (2012). Carbapenem resistance in Elizabethkingia meningoseptica is mediated by metallo-β-lactamase blaB. Antimicrobial Agents and Chemotherapy, 56(4), 1686-1692.
Crossref
 
Gupta, P., Zaman, K., Mohan, B., & Taneja, N. (2017). Elizabethkingia miricola: A rare non-fermenter causing urinary tract infection. World Journal of Clinical Cases, 5(5), 187-190.
Crossref
 
Han, M. S., Kim, H., Lee, Y., Kim, M., Ku, N. S., Choi, J. Y., Yong, D., Jeong, S. H., Lee, K., & Chong, Y. (2017). Relative prevalence and antimicrobial susceptibility of clinical isolates of Elizabethkingia species based on 16S rRNA gene sequencing. Journal of Clinical Microbiology, 55(1), 274-280.
Crossref
 
Heeb, S., Fletcher, M. P., Chhabra, S. R., Diggle, S. P., Williams, P., & Cámara, M. (2011). Quinolones: from antibiotics to autoinducers. FEMS Microbiology Reviews, 35(2), 247-274.
Crossref
 
Janda, J. M., & Lopez, D. L. (2017). Mini review: new pathogen profiles: Elizabethkingia anophelis. Diagnostic Microbiology and Infectious Disease, 88(2), 201-205.
Crossref
 
Jean, S. S., Lee, W. S., Chen, F. L., Ou, T. Y., & Hsueh, P. R. (2014). Elizabethkingia meningoseptica: an important emerging pathogen causing healthcare-associated infections. Journal of Hospital Infection, 86(4), 244-249.
Crossref
 
Jian, M. J., Cheng, Y. H., Perng, C. L., & Shang, H. S. (2018). Molecular typing and profiling of topoisomerase mutations causing resistance to ciprofloxacin and levofloxacin in Elizabethkingia species. PeerJ, 6, e5608.
Crossref
 
Kämpfer, P., Matthews, H., Glaeser, S. P., Martin, K., Lodders, N., & Faye, I. (2011). Elizabethkingia anophelis sp. nov., isolated from the midgut of the mosquito Anopheles gambiae. International Journal of Systematic and Evolutionary Microbiology, 61(11), 2670-2675.
Crossref
 
Kirby, J. T., Sader, H. S., Walsh, T. R., & Jones, R. N. (2004). Antimicrobial susceptibility and epidemiology of a worldwide collection of Chryseobacterium spp.: report from the SENTRY Antimicrobial Surveillance Program (1997-2001). Journal of Clinical Microbiology, 42(1), 445-448.
Crossref
 
Lau, S. K., Chow, W. N., Foo, C. H., Curreem, S. O., Lo, G. C. S., Teng, J. L., Chen, J. H., Ng, R. H., Wu, A. K., Cheung, I. Y., & Chau, S. K. (2016). Elizabethkingia anophelis bacteremia is associated with clinically significant infections and high mortality. Scientific Reports, 6, Article number 26045.
Crossref
 
Lin, J. N., Lai, C. H., Yang, C. H., & Huang, Y. H. (2019). Elizabethkingia infections in humans: from genomics to clinics. Microorganisms, 7(9), 295.
Crossref
 
Lin, J. N., Lai, C. H., Yang, C. H., Huang, Y. H., & Lin, H. H. (2018). Clinical manifestations, molecular characteristics, antimicrobial susceptibility patterns and contributions of target gene mutation to fluoroquinolone resistance in Elizabethkingia anophelis. Journal of Antimicrobial Chemotherapy, 73(9), 2497-2502.
Crossref
 
Lin, X. H., Xu, Y. H., Sun, X. H., Huang, Y., & Li, J. B. (2012). Genetic diversity analyses of antimicrobial resistance genes in clinical Chryseobacterium meningosepticum isolated from Hefei, China. International Journal of Antimicrobial Agents (Print), 40(2), 186-188.
Crossref
 
Nouri, R., Ahangarzadeh Rezaee, M., Hasani, A., Aghazadeh, M., & Asgharzadeh, M. (2016). The role of gyrA and parC mutations in fluoroquinolones-resistant Pseudomonas aeruginosa isolates from Iran. Brazilian Journal of Microbiology, 47(4), 925-930.
Crossref
 
Patel, J. B., Cockerill III, F., Eliopoulos, G., Jenkins, S., Lewis, J., Limbago, B., & Nicolau, D. (2017). M100 Performance standards for antimicrobial susceptibility testing. United State: Clinical and Laboratory Standards Institute, 240.
 
Perrin, A., Larsonneur, E., Nicholson, A. C., Edwards, D. J., Gundlach, K. M., Whitney, A. M., Gulvik, C. A., Bell, M. E., Rendueles, O., Cury, J., & Hugon, P. (2017). Evolutionary dynamics and genomic features of the Elizabethkingia anophelis 2015 to 2016 Wisconsin outbreak strain. Nature Communications, 8, Article number 15483.
Crossref
 
Ramirez, M. S., & Tolmasky, M. E. (2010). Aminoglycoside modifying enzymes. Drug Resistance Updates, 13(6), 151-171.
Crossref
 
Ratnamani, M. S., & Rao, R. (2013). Elizabethkingia meningoseptica: emerging nosocomial pathogen in bedside hemodialysis patients. Indian Journal of Critical Care Medicine, 17(5), 304-307.
Crossref
 
Rogers, E. J., Rahman, M. S., Hill, R. T., & Lovett, P. S. (2002). The chloramphenicol-inducible catB gene in Agrobacterium tumefaciens is regulated by translation attenuation. Journal of Bacteriology, 184(15), 4296-4300.
Crossref
 
Soltis, P. S., & Soltis, D. E. (2003). Applying the bootstrap in phylogeny reconstruction. Statistical Science, 18(2), 256-267.
Crossref
 
Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725-2729.
Crossref
 
Toprak, E., Veres, A., Michel, J. B., Chait, R., Hartl, D. L., & Kishony, R. (2012). Evolutionary paths to antibiotic resistance under dynamically sustained drug selection. Nature Genetics, 44, 101-105.
Crossref
 
Van Hoek, A. H., Mevius, D., Guerra, B., Mullany, P., Roberts, A. P., & Aarts, H. J. (2011). Acquired antibiotic resistance genes: an overview. Frontiers in Microbiology, Volume 2, Article Number 203.
Crossref
 
Vessillier, S., Docquier, J. D., Rival, S., Frere, J. M., Galleni, M., Amicosante, G., Rossolini, G. M., & Franceschini, N. (2002). Overproduction and biochemical characterization of the Chryseobacterium meningosepticum BlaB metallo-β-lactamase. Antimicrobial agents and chemotherapy, 46(6), 1921-1927.
Crossref
 
Wang, M., Gao, H., Lin, N., Zhang, Y., Huang, N., Walker, E. D., Ming, D., Chen, S., & Hu, S. (2019). The antibiotic resistance and pathogenicity of a multidrugā€resistant Elizabethkingia anophelis isolate. MicrobiologyOpen, 8(11), e804.
Crossref
 
Weaver, K. N., Jones, R. C., Albright, R., Thomas, Y., Zambrano, C. H., Costello, M., Havel, J., Price, J., & Gerber, S. I. (2010). Acute emergence of Elizabethkingia meningoseptica infection among mechanically ventilated patients in a long-term acute care facility. Infection Control and Hospital Epidemiology, 31(1), 54-58.
Crossref