JOURNAL OF PUBLIC HEALTH AND DISEASES
Integrity Research Journals

ISSN: 2705-2214
Model: Open Access/Peer Reviewed
DOI: 10.31248/JPHD
Start Year: 2018
Email: jphd@integrityresjournals.org


Resistant status and intensity of resistance of Anopheles gambiae sensu lato to pyrethroid and organophosphate in Lafia, Nasarawa State Nigeria

https://doi.org/10.31248/JPHD2021.111   |   Article Number: 19CF832D2   |   Vol.5 (2) - April 2022

Received Date: 25 November 2021   |   Accepted Date: 28 March 2022  |   Published Date: 30 April 2022

Authors:  Luka, J. , Yina, G. I.* and Okeke, P.

Keywords: organophosphate, resistance, Insecticide, pyrethroid, Lafia

Monitoring and understanding the trend and dynamics of insecticide resistance are key to devising efficient control strategies. This study was carried out to investigate the resistance status of Anopheles gambiae sl mosquitoes in Lafia, Nasarawa State Nigeria to three pyrethroid (deltamethrin, Alphacypermethrin and permethrin) with concentration of 12.5 µg/bottle each and an organophosphate (pirimiphose-methyl 20 µg/bottle). Larvae and pupae of Anopheles mosquito were sampled within the metropolis and reared to adults in the insectary of Nasarawa State University, Keffi Nasarawa State. Emerged adults of 2 to 5 days old and non-blood fed were tested for resistance using CDC bottle bioassay susceptibility protocol. Results showed that the local mosquitoes species were resistant to all the three pyrethroid (deltamethrin, Alphacypermethrin and permethrin) but showed possible resistant to organophosphate (pirimiphose-methyl) with mortalities of 88, 84, 54, and 95% respectively. Exposure to piperonyl butoxide (PBO) as a synergist resulted in the susceptibility (100 and 98%) of mosquitoes to deltamethrin and Alphacypermethrin respectively but resistant (81%) to permethrin. The intensity of resistance of the vector population to pyrethroid was high especially with permethrin. The mosquitoes were only susceptible (100%) to deltamethrin and Alphacypermethrin at X5 concentration and permethrin at X10 concentration. Insecticide based intervention strategy remain the principal vector control measure in malaria endemic countries like Nigeria. Based on the result of this study, future vector control programme should take into consideration the deployment of nets that are treated with alphacypermethrin or deltamethrin combined with PBO (PBO based nets) in the study area or increase the concentration of the pyrethoid insecticides used in this study on long lasting nets after their safety to human is assured.

Alonso, P. L., Brown, G., & Arevalo, H. M. (2011). A Research Agenda to Underpin Malaria Eradication. PLoS Medicine, 8(1), e1000406.
Crossref
 
Awolola, T. S., Brooke, B. D., Hunt, R. H., & Coetze, M. (2002). Resistance of the malaria vector Anopheles gambiae ss to pyrethroid insecticides, in south-western Nigeria. Annals of tropical medicine and parasitology, 96(8), 849-852.
Crossref
 
Awolola, T. S., Oduola, A. O., Oyewole, I. O., Obansa, J. B., Amajoh, C. N., Koekemoer, L. L., & Coetzee, M. (2007). Dynamics of knockdown pyrethroid insecticide resistance alleles in a field population of Anopheles gambiae ss in southwestern Nigeria. Journal of vector borne diseases, 44(3), 181-188.
 
Awolola, T. S., Oduola, O. A., Strode, C., Koekemoer, L. L., Brooke, B., & Ranson, H. (2009). Evidence of multiple pyrethroid resistance mechanisms in the malaria vector Anopheles gambiae sensu stricto from Nigeria. Transactions of the Royal Society of Tropical Medicine and Hygiene, 103(11), 1139-1145.
Crossref
 
Basing, A. W., & Tay, S. (2014). Malaria transmission dynamics of the anopheles mosquito in kumasi, ghana. International Journal of Infectious Diseases, 21(S1), 22.
Crossref
 
Centre for Disease Control and Prevention (CDC) (2010). Guideline for evaluating insecticide resistance in arthropod vectors using the CDC bottle bioassay. Centers for Disease Control and Prevention, Atlanta, GA.
 
Cisse, M. B., Keita, C., Dicko, A., Dengela, D., Coleman, J., Lucas, B., Mihigo, J., Sadou, A., Belemvire, A., George, K., & Beach, R. (2015). Characterizing the insecticide resistance of Anopheles gambiae in Mali. Malaria Journal, 14(1), 1-10.
Crossref
 
Coetzee, M. (2020). Key to the females of Afrotropical Anopheles mosquitoes (Diptera: Culicidae). Malaria Journal, 19(1), Article number 70.
Crossref
 
Cui, L., Mharakurwa, S., Ndiaye, D., Rathod, P. K., & Rosenthal, P. J. (2015). Antimalarial drug resistance: literature review and activities and findings of the ICEMR network. The American journal of tropical medicine and hygiene, 93(3 Suppl), 57-68.
Crossref
 
Djogb'enou, L. (2009). Vector control methods against malaria and vector resistance to insecticides in Africa. Medecine Tropicale: Revue du Corps de Sante Colonial. 69(2), 160-164.
 
Ebuka, E. K., Chukwudi, E. M., Chikaodili, U. B., Udoka, N. C., Cosmas, O. O., Paschal, A., Ejehu, A. Z., Kapu, I. T., Juliet, O. O., & Emmanuel, O. O. (2020). The Impact of Human and Socio-cultural behavior on Outdoor malaria transmission in a rural community of Nigeria: The Nyumagbagh experience. New York Science Journal, 13(12), 86-99
 
Edi, C. V. A., Koudou, B. G., Jones, C.M., Weetman, D., & Ranson, H. (2012). Multiple-insecticide resistance in Anopheles gambiae mosquitoes, Southern Cˆote d'Ivoire. Emerging Infectious Diseases, 18(9), 1508-1511.
Crossref
 
Epopa, P. S., Collins, C. M., North, A., Millogo, A. A., Benedict, M. Q., Tripet, F., & Diabate, A. (2019). Seasonal malaria vector and transmission dynamics in western Burkina Faso. Malaria journal, 18, Article number 113.
Crossref
 
Famakinde, D. O. (2018). Mosquitoes and the lymphatic filarial parasites: Research trends and budding roadmaps to future disease eradication. Tropical medicine and infectious disease, 3, 4.
Crossref
 
Farooq, U., & Mahajan, R. C. (2004). Drug resistance in malaria. Journal of Vector-borne Diseases, 41(3/4), 45-53.
 
Fodjo, B. K., Koudou, B. G., Tia, E., Saric, J., N'dri, P. B., Zoh, M. G., Gba, C. S., Kropf, A., Kesse, N. B., & Chouaïbou, M. S. (2018). Insecticides resistance status of An. gambiae in areas of varying agrochemical use in Côte d'Ivoire. BioMed Research International, Volume 2018, Article ID 2874160, 9 pages.
Crossref
 
Gnanguenon, V., Agossa, F. R., Badirou, K., Govoetchan, R., Anagonou, R., Oke-Agbo, F., Azondekon, R., AgbanrinYoussouf, R., Attolou, R., Tokponnon, F. T., & Akogbeto, M. C. (2015). Malaria vectors resistance to insecticides in Benin: current trends and mechanisms involved. Parasites & vectors, 8, Article number 223.
Crossref
 
Hilary, R., & Natalie, L. (2016). Insecticide Resistance in African Anopheles Mosquitoes: A Worsening Situation that Needs Urgent Action to Maintain Malaria Control. Trends in Parasitology, 32(3), 187-196.
Crossref
 
Insecticide Resistance Action Committee (IRAC) (2011). Prevention and management of insecticide resistance in vectors of public health importance (2nd edition). Resistance Management for Sustainable Agriculture and Improved Public Health, Bruxelles.
Link
 
Killeen, G. F., Tatarsky, A., Diabate, A., Chaccour, C. J., Marshall, J. M., Okumu, F. O., Brunner, S., Newby, G., Williams, Y.A., Malone, D. & Gosling, R. D. (2017). Developing an expanded vector control toolbox for malaria elimination. BMJ Global Health, 2(2), e000211.
Crossref
 
Nkya, T. E., Akhouayri, I., Poupardin, R., Batengana, B., Mosha, F., Magesa, S., Kisinza, W., & David, J. P. (2014). Insecticide resistance mechanisms associated with different environments in the malaria vector Anopheles gambiae: a case study in Tanzania. Malaria journal, 13, Article number 28.
Crossref
 
Nwankwo, E. N., Okorie, P. N., Acha, C. T., Okonkwo, O. E., Nwangwu, U. C., & Ezihe, E. K. (2017). Insecticide resistance in Anopheles gambiae sl mosquitoes in Awka, Anambra state, Southeast Nigeria. Journal of Mosquito Research, 7(5), 32-37.
Crossref
 
Odeyemi, O. O., Gbaye, O. A., & Akeju, O. (2006). Resistance of Callosobruchus maculatus (Fab.) to pirimiphos methyl in three zones in Nigeria. 9th International Working Conference on Stored Product Protection, 15-18 October 2006, São Paulo, Brazil.
 
Okechukwu C., Emmanuel N., Udoka N., Festus D., Cosmas O., Nneka A., Ebuka, E., Clementina, A., Stephen, A., Emelda, E., Peter, A., Francis, O., Sylvester, E., Angela, O., Anumba, J., Ijeoma, I., Sylvester, H., & Virgile , G. (2020). Resistance status of Anopheles gambiae (s.l.) to four commonly used insecticides for malaria vector control in South-East Nigeria. Parasites and Vectors, 13(1), 1-10.
Crossref
 
Okorie, P. N., Ademowo, O. G., Irving, H., Kelly‚ÄźHope, L. A., & Wondji, C. S. (2015). Insecticide susceptibility of A nopheles coluzzii and A nopheles gambiae mosquitoes in I badan, Southwest Nigeria. Medical and veterinary entomology, 29(1), 44-50.
Crossref
 
Okwa, O. O. (2019). Nipping the malaria vectors in the bud: focus on Nigeria. In Malaria. IntechOpen. Pp. 91-101.
Crossref
 
Philbert, A., Lyantagaye, S. L., & Nkwengulila, G. (2014). A review of agricultural pesticides use and the selection for resistance to insecticides in malaria vectors. Advances in Entomology, 2(3), 120-128.
Crossref
 
Reid, M. C., & McKenzie, F. E. (2016). The contribution of agricultural insecticide use to increasing insecticide resistance in African malaria vectors. Malaria Journal, 15, Article number 107.
Crossref
 
Sovi, A., Govoétchan, R., Ossé, R., Koukpo, C. Z., Salako, A. S., Syme, T., Anagonou, R., Fongnikin, A., Nwangwu, U.C., Oké-Agbo, F., Tokponnon, F., Padonou, G. G., & Akogbeto, M. C. (2020). Resistance status of Anopheles gambiae sl to insecticides following the 2011 mass distribution campaign of long-lasting insecticidal nets (LLINs) in the Plateau Department, south-eastern Benin. Malaria Journal, 19, Article number 26.
Crossref
 
WHO (2012). Global plan for insecticide resistance management, World Health Organization, Geneva.
 
WHO (2013). Test procedures for insecticide resistance monitoring in malaria vector mosquitoes, 240, Geneva.
 
WHO (2015a). World malaria report. Geneva, World Health Organization.
 
WHO (2015b). Global technical strategy for malaria 2016-2030. Technical Report, World Health Organization, Geneva.
 
WHO (2019). World malaria report. Geneva, World Health Organization.