ISSN: 2705-2214
Model: Open Access/Peer Reviewed
DOI: 10.31248/JPHD
Start Year: 2018
Email: jphd@integrityresjournals.org
https://doi.org/10.31248/JPHD2022.122 | Article Number: 0727C28A1 | Vol.5 (5) - December 2022
Received Date: 19 October 2022 | Accepted Date: 12 December 2022 | Published Date: 30 December 2022
Authors: Olufunke Olufunmilola Olorundare* , Grace Mebi Ayanbimpe , Noel Denaan Dawang and Nnaemeka Emmanuel Nnadi
Keywords: prevalence, Disease, Plateau State, isolates, Jos, Salmonella typhi.
Salmonella typhi, is estimated to cause 21.6 million illnesses and 216,000 deaths. The plight of displaced persons has in recent times become a formidable problem of global significance and implication. This work was aimed at isolating and characterizing S. typhi from two internally displaced camps in Jos, Plateau State, Nigeria. A total of 183 stool samples were collected randomly and cultured. Isolates were serotyped and identified by PCR targeting the invasive gene. An antimicrobial susceptibility test was carried out on isolates using the disc diffusion method. The study showed a prevalence of 1.1% for S. typhi and 1.6% for non-typhoid Salmonella. All the isolates were sensitive to ciprofloxacin, ofloxacin ceftriaxone, chloramphenicol and gentamicin except for nalidixic acid and cefuroxime. The Salmonella typhi isolates were sequenced using Fastp for quality control and the genotype was determined. Comparative genomics on the two S. typhi assembled showed S. typhi 1(SO1) contains 38 contigs and S. typhi 2 (SO2) had 35 contigs. The result shows that the genome is similar to the reference strain CT18. More care and adequate health facilities should be provided in other to further reduce the rate of infection in the IDP camps.
Abakpa, G. O., Umoh, V. J., Ameh, J. B., Yakubu, S. E., Kwaga, J. K. P., & Kamaruzaman, S. (2015). Diversity and antimicrobial resistance of Salmonella enterica isolated from fresh produce and environmental samples. Environmental Nanotechnology, Monitoring & Management, 3, 38-46. Crossref |
||||
Abioye, J. O. K., Salome, B., & Adogo, L. Y. (2017). Prevalence of Salmonella typhi Infection in Karu local government area of Nasarawa State, Nigeria. ournal of Advances in Microbiology, 6(2), 1-8. Crossref |
||||
Ajayi, O. E., Olukunle, O. F., & Boboye, B. E. (2015). Prevalence of typhoid fever among different socio-demographic groups in Ondo State, Nigeria. Journal of Applied Life Sciences International, 3(2), 89-95. Crossref |
||||
Akinyemi, K. O., Oyefolu, A. O. B., Mutiu, W. B., Iwalokun, B. A., Ayeni, E. S., Ajose, S. O., & Obaro, S. K. (2018). Typhoid fever: tracking the trend in Nigeria. The American journal of tropical medicine and hygiene, 99(3 Suppl), 41-47. Crossref |
||||
Alikhan, N. F., Petty, N. K., Ben Zakour, N. L., & Beatson, S. A. (2011). BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics, 12(1), Article Number 402. Crossref |
||||
Brettin, T., Davis, J. J., Disz, T., Edwards, R. A., Gerdes, S., Olsen, G. J., Olson, R., Overbeek, R., Parrello, B., Pusch, G. D., & Xia, F. (2015). RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. 5, Article Number 8365. Crossref |
||||
Butler, T., Islam, A., Kabir, I., & Jones, P. K. (1991). Patterns of morbidity and mortality in typhoid fever dependent on age and gender: review of 552 hopitalized patients with diarrhea. Reviews of infectious diseases, 13(1), 85-90. Crossref |
||||
Cabanettes, F., & Klopp, C. (2018). D-GENIES: dot plot large genomes in an interactive, efficient and simple way. PeerJ, 6, e4958. Crossref |
||||
Carattoli, A., Zankari, E., García-Fernández, A., Voldby Larsen, M., Lund, O., Villa, L., Møller Aarestrup, F., & Hasman, H. (2014). In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrobial agents and chemotherapy, 58(7), 3895-3903. Crossref |
||||
Chen, S., Zhou, Y., Chen, Y., & Gu, J. (2018). fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 34(17), i884-i890. Crossref |
||||
Connor, B. A., & Schwartz, E.(2005). Typhoid and paratyphoid fever in travellers. The Lancet Infectious Diseases, 5(10):623-8. Crossref |
||||
Crump, J. A., Luby, S. P., & Mintz, E. D. (2004). The global burden of typhoid fever. Bulletin of the World Health Organization, 82(5), 346-353. | ||||
Darling, A. C., Mau, B., Blattner, F. R., & Perna, N. T. (2004). Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Research, 14(7), 1394-1403. Crossref |
||||
Darling, A. E., Mau, B., & Perna, N. T. (2010). progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PloS one, 5(6), e11147. Crossref |
||||
Desai, A. N., Ramatowski, J. W., Marano, N., Madoff, L. C., & Lassmann, B. (2020). Infectious disease outbreaks among forcibly displaced persons: an analysis of ProMED reports 1996-2016. Conflict and Health, 14, Article Number 49. Crossref |
||||
Eibach, D., Al-Emran, H. M., Dekker, D. M., Krumkamp, R., Adu-Sarkodie, Y., Cruz Espinoza, L. M., Ehmen, C., Boahen, K., Heisig, P., Im, J., & May, J. (2016). The emergence of reduced ciprofloxacin susceptibility in Salmonella enterica causing bloodstream infections in rural Ghana. Clinical Infectious Diseases, 62(suppl_1), S32-S36. Crossref |
||||
Essa, F., Hussain, S. Z. M., Batool, D., Usman, A., Khalid, U., Yaqoob, U., & Shahzad, H. (2019). Study of socio-demographic factors affecting the prevalence of typhoid. Annals of Medical and Health Sciences Research, 9, 469-471 | ||||
Ezeigbo, O. R., Agomoh, N., &Asuoha-Chuks, N. (2015). Laboratory diagnosis of typhoid fever using Widal and blood culture methods in Aba, Southeastern Nigeria. American Journal of Microbiological Research, 3(6), 181-183. | ||||
Gautam, V., Gupta, N K., Chaudhary, U., & Arora, D. (2002). Sensitivity pattern of Salmonella serotypes in Northern India. Brazilian journal of infectious diseases, 6(6), 281-287. Crossref |
||||
Gurevich. A., Saveliev, V., Vyahhi, N., & Tesler, G. (2013). QUAST: quality assessment tool forgenome assemblies. Bioinformatics, 29(8), 1072-1075. Crossref |
||||
Ikhimiukor, O. O., Oaikhena, A. O., Afolayan, A. O., Fadeyi, A., Kehinde, A., Ogunleye, V. O., Aboderin, A. O., Oduyebo, O. O., Elikwu, C. J., Odih, E. E., & Okeke, I. N. (2022). Genomic characterization of invasive typhoidal and non-typhoidal Salmonella in southwestern Nigeria. PLOS Neglected Tropical Diseases, 16(8), e0010716. Crossref |
||||
Internaly displacement Monitoring Centre (IDMC) (2018). Global overview of Trends and Development Geneva. IDMC.3 Rue de Varembe,1202 Geneva Switzerland. | ||||
Kupferschmidt, K. (2015). Drug-resistant typhoid fever becoming an epidemic in Africa and Asia. Science. Retrieved from https://www.science.org/content/article/drug-resistant-typhoid-fever-becoming-epidemic-africa-and-asia. Crossref |
||||
Lam, E., McCarthy, A., & Brennan, M. (2015). Vaccine-preventable diseases in humanitarian emergencies among refugee and internally-displaced populations. Human Vaccines & Immunotherapeutics, 11(11), 2627-2636. Crossref |
||||
Lynch, M. F., Blanton, E. M., Bulens, S., Polyak, C., Vojdani, J., Stevenson, J., Medalla, F., Barzilay, E., Joyce, K., Barrett, T., & Mintz, E. D. (2009). Typhoid fever in the United States, 1999-2006. JAMA, 302(8), 859-865. Crossref |
||||
Mooney, E. (2005). The concept of internal displacement and the case for internally displaced persons as a category of concern. Refugee Survey Quarterly, 24(3), 9-26. Crossref |
||||
Nyamusore, J., Nahimana, M. R., Ngoc, C. T., Olu, O., Isiaka, A., Ndahindwa, V., Dassanayake, L., & Rusanganwa, A. (2018). Risk factors for transmission of Salmonella Typhi in Mahama refugee camp, Rwanda: a matched case-control study. Pan African Medical Journal, 29(1), 1-13. Crossref |
||||
Okonko, I., Soleye, F., Eyarefe, O., Amusan, T., Abubakar, M., Adeyi, A., et al.(2010). Prevalence of Salmonella typhi among patients in Abeokuta, south-western Nigeria. British Journal of Pharmacology and Toxicology, 1(1), 6-14. | ||||
Owoaje, E. T., Uchendu, O. C., Ajayi, T. O., & Cadmus, E. O. (2016). A review of the health problems of the internally displaced persons in Africa. Nigerian Postgraduate Medical Journal, 23(4), 161-171. Crossref |
||||
Oyeniran, O. A., Ojurongbe, O., Oladapo, E. K., Afolabi, A. Y., Ajayi, O. O., & Akloke, A. A. (2014). Intestinal parasite infection among primary school pupil in Oshogbo Nigeria. IOSR Journal of Dental and Medical Sciences, 13(7), 96-101. Crossref |
||||
Panezai, M., Nawaz, I., Taj, I., Panezai, N., Zafar, U., & Muhammad, G. (2018). Isolation and Identification of Salmonella paratyphi from Enteric Fever Patients at Different Hospitals of Quetta City. Pakistan journal of Biological Sciences, 21(9), 469-474. Crossref |
||||
Rabiu, S. M., Inusa, T., Farouk, A. U., & Ediga, A. B. (2018). Phenotypic characterization of Salmonella typhi isolated from febrile and diarrhea patients in Bauchi, Nigeria. GSC Biological and Pharmaceutical Sciences, 4(3), 61-67. Crossref |
||||
Rahn, K., De Grandis, S. A., Clarke, R. C., McEwen, S. A., Galan, J. E., Ginocchio, C., Curtiss Iii, R. & Gyles, C. L. (1992). Amplification of an invA gene sequence of Salmonella typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Molecular and Cellular Probes, 6(4), 271-279. Crossref |
||||
Salehi, T. Z., Mahzounieh, M., & Saeedzadeh, A. (2005). Detection of invA gene in isolated Salmonella from broilers by PCR method. International Journal of Poultry Science, 4(8), 557-559. Crossref |
||||
Sharma, I., & Das, K. (2016). Detection of invA gene in isolated Salmonella from marketed poultry meat by PCR assay. Journal of Food Processing & Technology, 7, Article Number 564. Crossref |
||||
Tatusova, T., DiCuccio, M., Badretdin, A., Chetvernin, V., Nawrocki, E. P., Zaslavsky, L., Lomsadze, A., Pruitt, K. D., Borodovsky, M., & Ostell, J. (2016). NCBI prokaryotic genome annotation pipeline. Nucleic Acids Research, 44(14), 6614-6624. Crossref |
||||
Tiwari, P., & Kaur, S. (2010). Profile and sensitivity pattern of bacteria isolated from various cultures in a Tertiary Care Hospital in Delhi. Indian journal of public health, 54(4), 213-215. Crossref |
||||
Walsh, P. S., Metzger, D. A., & Higuchi, R. (2018). Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques, 54(3), 506-513. Crossref |
||||
Wattiau, P., Boland, C., & Bertrand, S. (2011). Methodologies for Salmonella enterica subsp. enterica subtyping: gold standards and alternatives. Applied and Environmental Microbiology, 77(22), 7877-7885. Crossref |
||||
Wick, R. R., Judd, L. M., Gorrie, C. L., & Holt, K. E. (2017). Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS computational biology. 13(6), e1005595. Crossref |
||||
Yoshida, C. E., Kruczkiewicz, P., Laing, C. R., Lingohr, E. J., Gannon, V. P., Nash, J. H., & Taboada, E. N. (2016). The Salmonella in silico typing resource (SISTR): an open web-accessible tool for rapidly typing and subtyping draft Salmonella genome assemblies. PloS One, 11(1), e0147101. Crossref |
||||
Zailani, S. B., Aboderin, A. O., & Onipede, A. O. (2004). Effect of socio-economic status, age and sex on antibody titre profile to Salmonella typhi/paratyphi in Ile-Ife, Nigeria. Nigerian Journal of Medicine: Journal of the National Association of Resident Doctors of Nigeria, 13(4), 383-387. | ||||
Zankari, E., Hasman, H., Cosentino, S., Vestergaard, M., Rasmussen, S., Lund, O., Aarestrup, F. M. & Larsen, M. V. (2012). Identification of acquired antimicrobial resistance genes. Journal of Antimicrobial Chemotherapy, 67(11), 2640-2644. Crossref |