Model: Open Access/Peer Reviewed
DOI: 10.31248/JNDM
Start Year: 2020
Email: jndim@integrityresjournals.org
https://doi.org/10.31248/JNDM2024.018 | Article Number: F8480EA32 | Vol.2 (3) - June 2024
Received Date: 14 May 2024 | Accepted Date: 25 June 2024 | Published Date: 30 June 2024
Authors: Omorodion, Nnenna J. P.* and Esenwugwu Ogechi R
Keywords: microbial contamination., Abacha, cassava products
The study investigates the levels of microbial contamination in both dried cassava chips and fresh cassava chips, shedding light on the microbiological safety and nutritional aspects of these widely consumed food items. Microbial analysis and Physicochemical parameters were done using the standard method. The research revealed diverse microbial populations in the samples, with total heterotrophic bacteria counts ranging from 3.6x105 cfu/g to 1.36x106 cfu/g in dried cassava chips, and 3.5x105 cfu/g to 1.5x106 cfu/g in fresh cassava chip, coliform counts varied from 3.9x104 cfu/g to 8.4x104 cfu/g in dried cassava chip and 2.7x104 cfu/g to 5.4x106 cfu/g in wet cassava chip. Staphylococcus counts in dried cassava chips ranged from 2.5x103 cfu/g to 8.2x103 cfu/g, with no counts recorded in specific samples, while fresh cassava chips exhibited counts from 2.6x103 cfu/g to 6.8x103 cfu/g. Fungal counts varied widely, with dried cassava chips ranging from 8.0x102 cfu/g to 4.2x103 cfu/g and fresh cassava chips from 1.1x103 cfu/g to 2.9x103 cfu/g. Varying occurrences of bacteria and fungi between wet and dry cassava. Notably, Staphylococcus spp. exhibited a frequency of 33.8%, Bacillus spp. 23.5%, Escherichia coli 7.4%, Micrococcus spp. 4.4%, Proteus spp. 11.8 %, Pseudomonas spp. 11.8%, Lactobacillus 1.5%, and Klebsiella spp. 5.9%. The most frequent fungal species included Candida spp. (3.9%), Aspergillus niger (11.5%), Mucor (21.2%), Fusarium (13.5%), Aspergillus flavus (3.9%), Penicillium (3.9%), Rhizopus spp. (7.7%), Saccharomyces spp. (5.8%), Yeast (17.3%), pink yeast (3.9%), Aspergillus fumigatus (3.9%), and Trichoderma spp. (3.9%). Proximate content, revealing protein content of 1.03% and 1.25%, carbohydrate content of 91.5% and 87.35%, ash content of 0.349% and 0.88%, lipid content of 0.82% and 0.97%, moisture content of 6.24% and 9.55% for dried and fresh cassava chip, respectively. The cyanide content was higher in the fresh cassava chip compared to the dried cassava chip. This comprehensive assessment provides valuable insights into the microbial landscape and nutritional composition of cassava products, laying the groundwork for informed quality control and safety measures in their production and consumption.
Aboloma, R. I. (2008). Microbiological analysis of bread samples from bakery to sale points in Ado-Ekiti, Ekiti State, Nigeria. Biological and Environmental Sciences Journal for the Tropics, 5(3), 77-81. | ||||
Adebayo-Oyetoro, A. O., Oyewole, O. B., Obadina, A. O., & Omemu, M. A. (2013). Microbiological safety assessment of fermented cassava flour "Lafun" available in Ogun and Oyo states of Nigeria. International Journal of Food Science, Volume 2013, Article ID 845324, 5 pages. https://doi.org/10.1155/2013/845324 |
||||
Adetunji, C. O., Akande, S. A., Oladipo, A. K., Salawu, R. A., & Onyegbula, A. F. (2017). Determination of the microbiological quality and proximate composition of fermented cassava food products sold in Ilorin-west local government area, Nigeria. Ruhuna Journal of Science, 8(2), 76-89. https://doi.org/10.4038/rjs.v8i2.28 |
||||
Agiriga, A., & Iwe, M. (2016). Optimization of chemical properties of cassava varieties harvested at different times using response surface methodology. American Journal of Advanced Food Science and Technology, 4(1), 10-21. https://doi.org/10.7726/ajafst.2016.1002 |
||||
Akinsanya, M. H., Jaloye, M. H., & Oluwole, B. C. (2013). Microbiological quality of fermented Ogi sold in Ota, Ogun State, Nigeria. International. Journal of. Current. Microbiology and . Applied Science, 20(8), 128-143. | ||||
AOAC (2000). Official Methods of Analysis of AOAC International, 17th edition. Published by the Association of Official of Analytical Chemists International Suite 400 2200, Wilson Boulevard, Arlington, Virginia 22201-3301 USA. | ||||
Burns, A. E., Gleadow, R. M., Zacarias, A. M., Cuambe, C. E., Miller, R. E., & Cavagnaro, T. R. (2012). Variations in the chemical composition of cassava (Manihot esculenta Crantz) leaves and roots as affected by genotypic and environmental variation. Journal of Agricultural and Food Chemistry, 60(19), 4946-4956. https://doi.org/10.1021/jf2047288 |
||||
CAC (2013). CODEX STAN 176-1989. Codex standard for edible cassava flour. Adopted 1989, revision 1995, amendment 2013. | ||||
Charles, A. L., Chang, Y. H., Ko, W. C., Sriroth, K., & Huang, T. C. (2004). Some physical and chemical properties of starch isolates of cassava genotypes. StarchâStärke, 56(9), 413-418. https://doi.org/10.1002/star.200300226 |
||||
Cheesbrough, M. (2006). Distinct laboratory practical in tropical countries. 2nd Edition. Cambridge, UK. Pp. 201-207. https://doi.org/10.1017/CBO9780511543470 |
||||
Chiona, M., Ntawuruhunga, P., Benesi, I. R. M., Matumba, L., & Moyo, C. C. (2014). Aflatoxins contamination in processed cassava in Malawi and Zambia. African Journal of Food, Agriculture, Nutrition and Development, 14(3), 8809-8820. https://doi.org/10.18697/ajfand.63.13080 |
||||
Chisenga, S. M., Workneh, T. S., Bultosa, G., & Laing, M. (2019). Proximate composition, cyanide contents, and particle size distribution of cassava flour from cassava varieties in Zambia. AIMS Agriculture & Food, 4(4), 869-891. https://doi.org/10.3934/agrfood.2019.4.869 |
||||
Ekwu, F. C., & Ehirim, C. (2008). Comparative study of gari produced from dried cassava chips and fresh cassava. Nigerian Food Journal, 26(2), 60-68. https://doi.org/10.4314/nifoj.v26i2.47438 |
||||
Ekwu, F. C., Uvere, P. O., & Chinwero, O. M. (2012). Quality of 'abacha' from fresh cassava roots and dried chips. Nigerian Food Journal, 30(1), 124-130. https://doi.org/10.1016/S0189-7241(15)30021-7 |
||||
Eleazu, C. O., & Eleazu, K. C. (2012). Determination of the proximate composition, total carotenoid, reducing sugars and residual cyanide levels of flours of 6 new yellow and white cassava (Manihot esculenta Crantz) varieties. American Journal of Food Technology, 7(10), 642-649. https://doi.org/10.3923/ajft.2012.642.649 |
||||
Ezeh, E., Okeke, O., Aburu, C. M., & Anya, O. U. (2018). Comparative evaluation of the cyanide and heavy metal levels in traditionally processed cassava meal products sold within Enugu Metropolis. International Journal of Environmental Sciences & Natural Resources, 12(2), 47-52. | ||||
FAO (2005). A review of cassava in Africa with country case studies on Nigeria, Ghana, the United Republic of Tanzania, Uganda and Benin. Rome, Italy: International Fund for Agricultural Development Food and Agriculture Organization of the United Nations. | ||||
FAO/WHO (1991). Joint FAO/WHO Food Standards Programme. Codex Alimentarius. | ||||
Gacheru, P. K., Abong, G. O., Okoth, M. W., Lamuka, P. O., Shibairo, S. A., & Katama, C. K. M. (2016). Microbiological safety and quality of dried cassava chips and flour sold in the Nairobi and coastal regions of Kenya. African Crop Science Journal, 24(1), 137-143. https://doi.org/10.4314/acsj.v24i1.15S |
||||
Githunguri, C. M., Mwiti, S., & Migwa, Y. (2007). Cyanogenic potentials of early bulking cassava planted at Katumani, a semi-arid area of Eastern Kenya. In 8th African Crop Science Society Conference, El-Minia, Egypt, 27-31 October 2007 (pp. 925-927). | ||||
Guthrie, R. H. (1983). Food sanitation. 2nd edition. Avi Publishing Company Inc., Westport, Connecticut, U.S.A. 391p. | ||||
Iliya, J. M., & Madumelu, M. (2019). Determination of cyanide content in cassava tubers(Manihot esculenta) and apple seed (Pyrus malus). International Journal of Current Research In Chemistry and Pharmaceutical Sciences, 6(2), 14-20. | ||||
Johnson, J. T., Onyenweaku, E. O., Ujong, U. P., & Gbashi, S. (2016). Bacteriological Assessment of Cassava Products in Makurdi Markets, Guinea Savanna, Nigeria. Pyrex Journal of Food Science and Technology, 2(1), 1-4. https://doi.org/10.19080/NFSIJ.2016.01.555560 |
||||
Jonathan, S. G., Bello, T. S., & Asemoloye, M. D. (2017). Food values, spoilage moulds and aflatoxin detection in Attiéké (A Cassava Fermented Product). Journal of Microbial and Biochemical Technology 9(5), 244-248. https://doi.org/10.4172/1948-5948.1000372 |
||||
Kareem, B. (2022). Evaluation of glycaemic index, starch-hydrolyzing enzymes inhibitory and antioxidant properties of traditional products of select biofortified cassava varieties (Doctoral dissertation, Kwara State University, Nigeria). | ||||
Kim, K. Y., Kim, H. T., Kim, D., Nakajima, J., & Higuchi, T. (2009). Distribution characteristics of airborne bacteria and fungi in the feedstuff-manufacturing factories. Journal of Hazardous Materials, 169(1-3), 1054-1060. https://doi.org/10.1016/j.jhazmat.2009.04.059 |
||||
Kiura, J. N., Mutegi, C. K., Kibet, P., & Danda, M. K. (2005). Cassava production, utilisation and marketing in coastal Kenya. A report of a survey on cassava enterprise conducted between July and October 2003 in Kwale, Kilifi, Mombasa and Malindi districts (No. 35). Internal report. | ||||
Kuliahsari, D. E., Sari, I. N. I., & Estiasih, T. (2021, April). Cyanide detoxification methods in food: A review. In IOP Conference Series: Earth and Environmental Science (Vol. 733, No. 1, p. 012099). IOP Publishing https://doi.org/10.1088/1755-1315/733/1/012099 |
||||
Li, L., Wang, N., Ma, S., Yang, S., Chen, X., Ke, Y., & Wang, X. (2018). Relationship of moisture status and quality characteristics of fresh wet noodles prepared from different grade wheat flours from flour milling streams. Journal of chemistry, Volume 2018, Article ID 7464297, 8 pages. https://doi.org/10.1155/2018/7464297 |
||||
Liston, J., & Matches, J., (1976). Fish crustaceans and precooked seafood's. In: Compendium of methods for microbiological examination of foods. cap. 40:507. American Public. Health Association (APHA). Washington. D.C., USA. | ||||
Manano, J., Ogwok, P., & Byarugaba-Bazirake, G. W. (2017). Chemical composition of major cassava varieties in Uganda, targeted for industrialisation. Journal of Food Research, 7, 1 https://doi.org/10.5539/jfr.v7n1p1 |
||||
Manjula, K., Hell, K., Fandohan, P., Abass, A., & Bandyopadhyay, R. (2009). Aflatoxin and fumonisin contamination of cassava products and maize grain from markets in Tanzania and the Republic of the Congo. Toxin Reviews, 28(2-3), 63-69. https://doi.org/10.1080/15569540802462214 |
||||
Ndubuisi, N. D., Chidiebere, A. C. U. (2018). Cyanide in cassava: A review. International Journal of Genomics and Data Mining, 2018(1), 1-10. https://doi.org/10.29011/2577-0616.000118 |
||||
Nweze, E. I. (2010). Aetiology of diarrhoea and virulence properties of diarrhoeagenic Escherichia coli among patients and healthy subjects in southeast Nigeria. Journal of Health, Population, and Nutrition, 28(3), 245-252. https://doi.org/10.3329/jhpn.v28i3.5551 |
||||
Nwokorie, C. (2021). Microbial quality of hawked sliced tapioca sold in Umuahia metropolis. Retrieved 5th February 2024 from https://repository.mouau.edu.ng/work/view/microbial-quality-of-hawked-sliced-tapioca-sold-in-umuahia-metropolis-7-2. | ||||
Nyirendah, D. B., Afoakwa, E. O., Asiedu, C., Budu, A. S., & Chiwona-Karltun, L. (2012). Chemical composition and cyanogenic potential of traditional and high yielding CMD resistant cassava (Manihot esculenta Crantz) varieties. International Food Research Journal, 19(1), 175-181. | ||||
Obadina, A. O., Oyewole, O. B., Sanni, L. O., Tomlins, K. I., & Westby, A. (2008). Identification of hazards and critical control points (CCP) for cassava fufu processing in South-West Nigeria. Food Control, 19(1), 22-26. https://doi.org/10.1016/j.foodcont.2007.01.002 |
||||
Odetunde, S. K., Adebajo, L. O., Lawal, A. K., & Itoandon, E. E3 (2014) Investigation into the microbiological and chemical characteristics of cassava flour in Nigeria. Global Advanced Research Journal of Microbiology, 3(3), 31-40. | ||||
Ogiehor, I. S., & Ikenebomeh, M. J. (2005). Extension of shelf life of garri by hygienic handling and sodium benzoate treatment. African Journal of Biotechnology, 4(7), 744-748. https://doi.org/10.5897/AJB2005.000-3135 |
||||
Okaka, J. C. (2007). Tropical plant perishables. Handling, storage and processing. Sill Valley Publishers, New Heaven, Enugu, Nigeria. Pp. 97-148. | ||||
Olopade, B. K., Oranusi, S., Ajala, R., & Olorunsola, S. J. (2014). Microbiological quality of fermented cassava (garri) sold in Ota Ogun State Nigeria. International Journal of Current Microbiology and Applied Sciences, 3(3), 888-895. | ||||
Omemu, A. M., & Faniran, O. W. (2011). Assessment of the antimicrobial activity of lactic acid bacteria isolated from two fermented maize products-ogi and kunnu-zaki. Malaysian Journal of Microbiology, 7(3), 124-128. https://doi.org/10.21161/mjm.25710 |
||||
Omowonuola, A. O. A., Mary, E. M., Fidelis, A. F., Olalekan, A. S. A., & Sunday, A. A. (2017). Quality characteristics of fermented cassava flour (Lafun) produced using backslopping method. EC Nutrition, 7(2), 52-57. | ||||
Oyeyi, T. I., & Lum-Nwi, M. E. F. (2008). Bacteriological quality of some street vended foods in Bayero University campuses, Kano, Nigeria. Biological and Environmental Sciences Journal for the Tropics, 5(4), 239-243. | ||||
Oyeyiola, G. P., Oyeniyi, O. R., Arekemase, M. O., & Ahmed, R. N. (2014). A comparative study on the microbiological and nutritional properties of stored chips and flours. World Journal of Biological Research, 6(2), 1-6. | ||||
Passos, M. E. A. D., Moreira, C. F. F., Pacheco, M. T. B., Takase, I., Lopes, M. L. M., & Valente-Mesquita, V. L. (2013). Proximate and mineral composition of industrialized biscuits. Food Science and Technology, 33, 323-331. https://doi.org/10.1590/S0101-20612013005000046 |
||||
Pomeranz, Y., & Chung, O. K. (1978). Interaction of lipids with proteins and carbohydrates in breadmaking. Journal of the American Oil Chemists' Society, 55(2), 285-289. https://doi.org/10.1007/BF02676944 |
||||
Rojas, C. C., Nair, B., Herbas, A., & Bergenståhl, B. (2007). Proximal composition and mineral contents of six varieties of cassava (Mannihot esculenta, Crantz), from Bolivia. Revista Boliviana de Química, 24(1), 71-77. | ||||
Shamsuddeen, U., & Ameh, J. B. (2008). Survey on the possible critical control points during the production of "Balangu" in Kano. Bayero Journal of Pure and Applied Sciences, 1(1), 76-79. | ||||
Shittu, T. A., Dixon, A., Awonorin, S. O., Sanni, L. O., & Maziya-Dixon, B. (2008). Bread from composite cassava-wheat flour. II: Effect of cassava genotype and nitrogen fertilizer on bread quality. Food Research International, 41(6), 569-578. https://doi.org/10.1016/j.foodres.2008.03.008 |
||||
Somendrika, M. A. D., Wickramasinghe, I., Wansapala, M. A. J., & Peiris, S. (2016). Analyzing Proximate Composition Of Macro Nutrients of Sri Lankan Cassava Variety" Kirikawadi". Pakistan Journal of Nutrition, 15(3)283-287 https://doi.org/10.3923/pjn.2016.283.287 |
||||
Udoro, E. O., Anyasi, T. A., & Jideani, A. I. O. (2021). Process-induced modifications on quality attributes of cassava (Manihot esculenta Crantz) flour. Processes, 9(11), 1891. https://doi.org/10.3390/pr9111891 |
||||
Wada-Kura, A., Maxwell, R. G., Sadiq, H. Y., Tijjani, M. B., Abdullahi, I. O., Aliyu, M. S., & Adetunji, O. A. (2009). Microbiological quality of some ready-to-eat foods and fomites in some cafeterias in Ahmadu Bello University, Zaria. Biological and Environmental Sciences Journal for the Tropics, 6(1), 6-9. |