Model: Open Access/Peer Reviewed
DOI: 10.31248/JNDM
Start Year: 2020
Email: jndim@integrityresjournals.org
https://doi.org/10.31248/JNDM2024.017 | Article Number: A05616141 | Vol.2 (3) - June 2024
Received Date: 30 April 2024 | Accepted Date: 20 June 2024 | Published Date: 30 June 2024
Authors: Margaret Toluwalayo Arowolo* , Abigail Oluwasanmi Arowolo and Okikiola O. Falade
Keywords: fermentation, fermented cereal gruel, lactic acid bacteria, melibiase activity, microbiology, yellow Ogi.
This study focuses on the isolation and identification of Lactic Acid Bacteria (LAB) from yellow Ogi samples within Ile- Ife community and their enzymatic potential. Yellow Ogi were collected randomly at five different locations in Ile-Ife and LAB were isolated using De Man Rogosa Sharpe (MRS) agar under anaerobic condition for forty-eight hours at 37oC. The isolates obtained were identified using standard physiological and biochemical methods. The mean microbial load of the samples was enumerated. The melibiase activities of the isolates were determined using DNSA method. The mean microbial load of LAB in the samples ranged from 2.1 x 105 to 2.8 x 105 cfu/g. The organisms were identified as Lactobacillus plantarum (45.5%), Lactobacillus acidophilus (36.3%) and Lactobacillus pentosus (18.2%). Melibiase activities of the isolates were determined using DNSA method, showing activity levels ranging from 0.125 mg/ml to 1.775mg/ml. These findings underscore the prevalence of LAB in fermented foods like Ogi, highlighting their role in improving the flavor, aroma, shelf life and organoleptic properties. Moreover, LAB demonstrate significant enzymatic capabilities in the breakdown of sugars, further emphasizing their importance in food fermentation processes.
Abbott, D. A., Van Den Brink, J., Minneboo, I. M., Pronk, J. T., & Van Maris, A. J. (2009). Anaerobic homolactate fermentation with Saccharomyces cerevisiae results in depletion of ATP and impaired metabolic activity. FEMS Yeast Research, 9(3), 349-357. https://doi.org/10.1111/j.1567-1364.2009.00506.x |
||||
Adamberg, K., Kask, S., Laht, T. M., & Paalme, T. (2003). The effect of temperature and pH on the growth of lactic acid bacteria: a pH-auxostat study. International Journal of Food Microbiology, 85(1-2), 171-183. https://doi.org/10.1016/S0168-1605(02)00537-8 |
||||
Adeleke, R. O., Abiodun, O. A., & Ayansina, A. D. (2010). | ||||
Physiochemical properties of commercial local fermented foods. Pakistan Journal of Nutrition, 9, 853-855. https://doi.org/10.3923/pjn.2010.853.855 |
||||
Aderiye, J. B., Laleye, S. A., & Odeyemi, A. T. (2007). Hypolipidemic potential of potential of Lactobacillus and Streptococcus sp from some Nigeria fermented foods. Research Journal of Microbiology, 2(6), 538-544. https://doi.org/10.3923/jm.2007.538.544 |
||||
Adeyemo, S. M., & Onilude, A. A. (2013). Enzymatic reduction of anti-nutritional factors in fermenting soybeans by Lactobacillus plantarum isolates from fermenting cereals. Nigerian Food Journal, 31(2), 84-90. https://doi.org/10.1016/S0189-7241(15)30080-1 |
||||
Afolayan, M. O., Afolayan, M., & Abuah, J. N. (2010). An investigation into sorghum based ogi (Ogi-Baba) storage characteristics. Advance Journal of Food Science and Technology, 2(1), 72-78. | ||||
Alazzeh, A. Y., Ibrahim, S. A., Song, D., Shahbazi, A., & AbuGhazaleh, A. A. (2009). Screening for α-and β-galactosidases in Lactobacillus reuteri compared to different strains of bifidobacteria. Milchwissenschaft, 64(4), 434-437. | ||||
Alvarez-Sieiro, P., Montalbán-López, M., Mu, D., & Kuipers, O. P. (2016). Bacteriocins of lactic acid bacteria: extending the family. Applied Microbiology and Biotechnology, 100, 2939-2951. https://doi.org/10.1007/s00253-016-7343-9 |
||||
Amakoromo, E. R. (2011). Indigenous fermented foods of Nigeria: Processing, composition and Improvement. University of Port Harcourt Press, P.H, Nigeria. Pp. 57-65. | ||||
Aminigo, E. R., & Akingbala, J. O. (2004). Nutritive composition and sensory properties of Ogi fortified with Okra seed meal. Journal of Applied Sciences and Environmental Management, 8(2), 23-28. https://doi.org/10.4314/jasem.v8i2.17235 |
||||
Awan, J. A., & Rahman, S. U. (2005). Microbiology manual. Unitech Communications, Faisalabad, Pakistan, Pp. 49-51. | ||||
Ayivi, R. D., Gyawali, R., Krastanov, A., Aljaloud, S. O., Worku, M., Tahergorabi, R., Silva, R. C. D., & Ibrahim, S. A. (2020). Lactic acid bacteria: Food safety and human health applications. Dairy, 1(3), 202-232. https://doi.org/10.3390/dairy1030015 |
||||
Bernfield, P. (1955). Amylase, alpha and beta in Methods in Enzymology. In: Colowick, S. P., & Kaplan, N. O. (eds.), Academic Press. New York. Pp. 149-158. | ||||
Carr, F. J., Chill, D., & Maida, N. (2002). The lactic acid bacteria: A literature survey. Critical Reviews in Microbiology, 28(4), 281-370. https://doi.org/10.1080/1040-840291046759 |
||||
Cheesbrough, M. (2000). District laboratory practice in tropical countries. Cambridge University Press, Cambridge. Pp. 97-182. | ||||
Chelikani, P., Fita, I., & Loewen, P. C. (2004). Diversity of structures and properties among catalases. Cellular and Molecular Life Sciences, 61, 192-208. https://doi.org/10.1007/s00018-003-3206-5 |
||||
Chelule, P. K., Mbongwa, H. P., Carries, S., & Gqaleni, N. (2010). Lactic acid fermentation improves the quality of amahewu, a traditional South African maize-based porridge. Food Chemistry, 122(3), 656-661. https://doi.org/10.1016/j.foodchem.2010.03.026 |
||||
Cowan, S. T., & Steel, K. J. (2002). Manual for the identification of medical bacteria. 2nd edition, Cambridge University Press, Cambridge. Pp. 51-120. | ||||
De Vuyst, L., & Frederick, L. (2007). Bacteriocin from LAB: Production, purification and food application. Journal of Molecular Microbiology and Biotechnology, 13, 194-199. https://doi.org/10.1159/000104752 |
||||
Di Caro, S., Tao, H., Grillo, A., Elia, C., Gasbarrini, G., Sepulveda, A. R., & Gasbarrini, A. (2005). Effects of Lactobacillus GG on genes expression pattern in small bowel mucosa. Digestive and Liver Disease, 37(5), 320-329. https://doi.org/10.1016/j.dld.2004.12.008 |
||||
Ezeronye, O. U. (2003). Fermentation kinetics and removal of off-odour in cassava fufu. Nigerian Journal of Environmental and Applied Biology, 4, 1-4. | ||||
Farzadi, M., Khatami, S., Mousavi, M., & Amirmozafari, N. (2011). Purification and characterization of α-galactosidase from Lactobacillus acidofillus. African Journal of Biotechnology, 10(10), 1873-1879. | ||||
Forbes, B. A. (2007). Bailey and Scott's Diagnostic Microbiology, twelfth edition. C.V. Mosby Company, St. Louis. Pp. 1103-1112. | ||||
Gao, H., Li, X., Chen, X., Hai, D., Wei, C., Zhang, L., & Li, P. (2022). The functional roles of Lactobacillus acidophilus in different physiological and pathological processes. Journal of Microbiology and Biotechnology, 32(10), 1226-1233. https://doi.org/10.4014/jmb.2205.05041 |
||||
Gibson, G. R., & Fuller, R. (2000). Aspects of in vitro and in vivo research approaches directed toward identifying probiotics and prebiotics for human use. The Journal of Nutrition, 130(2), 391S-395S. https://doi.org/10.1093/jn/130.2.391S |
||||
Giraud, E., Brauman, A., Keleke, S., Lelong, B., & Raimbault, M. (1991). Isolation and physiological studies of an amylolytic strain of Lactobacillus plantarum. Applied Microbiology and Biotechnology, 36, 379-382. https://doi.org/10.1007/BF00208160 |
||||
Gupta, R., Jeevaratnam, K., & Fatima, A. (2018). Lactic acid bacteria: Probiotic characteristic, selection criteria, and its role in human health. Journal of Emerging Technologies and Innovative Research, 5(10), 411-424. | ||||
Ibrahim, S. A., Ayivi, R. D., Zimmerman, T., Siddiqui, S. A., Altemimi, A. B., Fidan, H., Esatbeyoglu, T., & Bakhshayesh, R. V. (2021). Lactic acid bacteria as antimicrobial agents: Food safety and microbial food spoilage prevention. Foods, 10(12), 3131. https://doi.org/10.3390/foods10123131 |
||||
Inyang, C. U., & Idoko, C. A. (2006). Assessment of the quality of ogi made from malted millet. African Journal of Biotechnology, 5(22), 2334-2337. | ||||
Ismail, Y. S., Yulvizar, C., & Mazhitov, B. (2018, March). Characterization of lactic acid bacteria from local cow s milk kefir. In IOP Conference Series: Earth and Environmental Science (Vol. 130, p. 012019). IOP Publishing. https://doi.org/10.1088/1755-1315/130/1/012019 |
||||
Khushboo, Karnwal, A., & Malik, T. (2023). Characterization and selection of probiotic Lactic Acid Bacteria from different dietary sources for development of functional foods. Frontiers in Microbiology, 14, 1170725. https://doi.org/10.3389/fmicb.2023.1170725 |
||||
Kostinek, M., Specht, I., Edward, V.A., Pinto, C., Egounlety, M., Sossa, C., Mbugua, S., Dortu, C., Thonart, P., Taljaard, L., Mengu, M., Franz, C.M., & Holzapfel, W.H. (2007). Characterisation and biochemical properties of predominant lactic acid bacteria from fermenting cassava for selection as starter cultures. International Journal of Food Microbiology, 114, 342-351. https://doi.org/10.1016/j.ijfoodmicro.2006.09.029 |
||||
Kruskall, M. S., AuBuchon, J. P., Anthony, K. Y., Herschel, L., Pickard, C., Biehl, R., Horowitz, M., Brambilla, D.J., & Popovsky M.A. (2000). Transfusion to blood group A and O patients of group B RBCs that have been enzymatically converted to group O. Transfusion, 40(11), 1290-1298. https://doi.org/10.1046/j.1537-2995.2000.40111290.x |
||||
Li, M., Wang, Y., Cui, H., Li, Y., Sun, Y., & Qiu, H. J. (2020). Characterization of lactic acid bacteria isolated from the gastrointestinal tract of a wild boar as potential probiotics. Frontiers in Veterinary Science, 7, 49. https://doi.org/10.3389/fvets.2020.00049 |
||||
Macwilliams, R. T. (2009). Citrate test protocols. Microbe Library. American Society of Microbiology. Pp. 78-84. | ||||
Mgomi, F. C., Yang, Y. R., Cheng, G., & Yang, Z. Q. (2023). Lactic acid bacteria biofilms and their antimicrobial potential against pathogenic microorganisms. Biofilm, 5, 100118. https://doi.org/10.1016/j.bioflm.2023.100118 |
||||
N'zi, K. P., Adingra, K. M. D., N'guessan, K. F., Attchelouwa, C. K., & Tano, K. (2021). Effect of spontaneous fermentation time on physicochemical, nutrient, anti-nutrient and microbiological composition of Lima Bean (Phaseolus lunatus) flour. Journal of Applied Biosciences, 162(1), 16707-16725. https://doi.org/10.35759/JABs.162.3 |
||||
Obadina, A. O., Oyewole, O. B., Sanni, L. O., & Tomlins, K. I. (2006). Bio-preservative activities of Lactobacillus plantarum strains in fermenting Casssava 'fufu'. African Journal of Biotechnology, 5(8), 620-623. | ||||
Olutiola, P. O., Famurewa, O., & Sonntag, H. G. (1991). An introduction to general microbiology: A practical approach. Heidelberger Velagsaustalg and Duckerei. GmbH Heidelberg. Pp. 157-175. | ||||
Omemu, A. M., & Omeike, S. O. (2010). Microbiological hazard and critical control points identification during household preparation of cooked ogi used as weaning food. International Food Research Journal, 17, 257-266. | ||||
Omemu, A. M., Oyewole, O. B., & Bankole, M. O. (2007). Significance of yeasts in fermentation of maize for ogi production. Food Microbiology, 20, 127-132. https://doi.org/10.1016/j.fm.2007.01.006 |
||||
Osungbaro, T. O. (2009). Physical and nutritive properties of fermented cereal foods. African Journal of Food Science, 3(2), 023-027. | ||||
Parveen, S., & Hafiz, F. (2003). Fermented cereal from indigenous raw material. Pakistan Journal of Nutrition, 2(5), 289-291. https://doi.org/10.3923/pjn.2003.289.291 |
||||
Patel, A., Lindström, C., Patel, A., Prajapati, J. B., & Holst, O. (2012). Probiotic properties of exopolysaccharide producing lactic acid bacteria isolated from vegetables and traditional Indian fermented foods. International Journal of Fermented Foods, 1(1), 87-101. | ||||
Salvucci, E., LeBlanc, J. G., & Pérez, G. (2016). Technological properties of lactic acid bacteria isolated from raw cereal material. LWT, 70, 185-191. https://doi.org/10.1016/j.lwt.2016.02.043 |
||||
Sidhu, P. K., & Nehra, K. (2021). Bacteriocins of lactic acid bacteria as potent antimicrobial peptides against food pathogens (Chapter 8). Biomimetics, IntechOpen. https://doi.org/10.5772/intechopen.95747 |
||||
Sieuwerts, S., Bron, P. A., & Smid, E. J. (2018). Mutually stimulating interactions between Lactic Acid Bacteria and Saccharomyces cerevisiae in sourdough fermentation. LWT, 90, 201-206. https://doi.org/10.1016/j.lwt.2017.12.022 |
||||
Sneath, P. H., Mair, N. S., Sharpe, M. E., & Holt, J.G. (2009). Bergey's manual of determinative bacteriology. Lippincott Williams & Wilkins. Pp. 125-367 | ||||
Stryer, L., Berg, J. M., & Tymoczko, J. L. (2002). Biochemistry (5th edition). San Francisco: W.H. Freeman. Pp. 123-246. | ||||
Sunano, Y. (2015). Procedure of brewing alcohol as a staple food: case study of the fermented cereal liquor "Parshot" as a staple food in Dirashe Special Woreda, Southern Ethiopia. Food Science & Nutrition, 4(4), 544-554. https://doi.org/10.1002/fsn3.316 |
||||
Tadesse, T., Kebede, B., Yimer, D., Workie, M., Tibebu, T., Abera, S., Tilahun, A., Alemu, M., Daba, T., Eshetu, A., & Dida, G. (2021). Screening and characterization of potential cyanide tolerating lactic acid bacteria from cassava pulp juice. International Journal of Biology and Pharmacy Research Updates, 1(1), 26-31 https://doi.org/10.53430/ijbpru.2021.1.1.0025 |
||||
Tamang, J. P. (2011). Prospects of Asian fermented foods in global market. 11th ASEAN Food Conference Proceeding, Bangkok, Thailand. Pp. 1308-1315. | ||||
Thanh, N. T., Chwen, L. T., Foo, H. L., Hair-Bejo, M., & Kasim, A. B. (2010). Inhibitory activity of metabolites produced by strains of Lactobacillus plantarum isolated from Malaysian fermented food. International Journal of Probiotics & Prebiotics, 5(1), 37-44. | ||||
Todar, K. (2012). Lactic acid bacteria. The good, the bad and the deadly. Todar's Online Textbook of Bacteriology. Pp. 1-5. | ||||
Zhou, Y., Zhu, Y., Dai, L., Men, Y., Wu, J., Zhang, J., & Sun, Y. (2017). Efficiency analysis and mechanism Insight of that whole-cell biocatalytic production of melibiose from raffinose with Saccharomyces cerevisiae. Applied Biochemistry and Biotechnology, 181, 407-423. https://doi.org/10.1007/s12010-016-2220-7 |