JOURNAL OF BIOSCIENCE AND BIOTECHNOLOGY DISCOVERY
Integrity Research Journals

ISSN: 2536-7064
Model: Open Access/Peer Reviewed
DOI: 10.31248/JBBD
Start Year: 2016
Email: jbbd@integrityresjournals.org


Morphological and physiological characterization of nitrogen fixing rhizobia isolated from country bean (Lablaba perpureus) of Narail, Bangladesh

https://doi.org/10.31248/JBBD2019.100   |   Article Number: F3A0E3081   |   Vol.4 (4) - August 2019

Received Date: 18 June 2019   |   Accepted Date: 14 August 2019  |   Published Date: 30 August 2019

Authors:  Syed Raju Ali* , A. S. M. MahadiuzzamanS M Mahadiuzzaman1, , Rozely Hossain , Suraia Nusrin and Sabina Yasmin

Keywords: rhizobia, symbiosis., Country bean, Nitrogen fixation, nodule

Nitrogen is one of the important constituents of the plants. It is fixed in legume plants from the atmosphere by the association of beneficial gram negative soil bacteria named rhizobia. This study aimed to distinguish the morpho-physiological characteristics of naturally growing rhizobia having higher environmental and external stress tolerance. Twenty-two isolates were isolated from country bean root nodules and characterized based on different tests. The isolates varied from one another with level of parameters of the treatments. Most of them exhibited cream color colonies and some isolates evolved white and pink colonies. The average colony size of the isolates was ranged between 0.83 to 2.83 mm after one day and 1.33 to 5.00 mm after two days. Among them, 17 isolates were alkali producers, three isolates were acid producer and only two isolates produced neutral mucous. All the isolates showed complete resistance at pH 5.0 to 10.0, 2% NaCl, 10 to 42oC temperature, and 0.1 mM of heavy metallic salt MnCl2, FeCl3 and PbCl3. Nevertheless, most of the isolates also tolerated pH 4.0; 3 to 7% NaCl; 47oC temperature; 0.1 mM CuSO4. On the other hand, a few numbers of the isolates resisted 100 µg/ml and 200 µg/ml ampicillin, kanamycin and tetracycline antibiotics. Therefore, exploration of country bean rhizobia for their environmental stress tolerance capacity might be a core study for the production of cost-effective bio-fertilizer to boost up country bean yield.

Abo-Aba, S. E. M., Mutwakil, M. Z., & Al-Ahmadi, T. M. (2015). Isolation and molecular characterization of heat and salt tolerance rhizobia isolated from Saudi Arabia. Journal of American Science, 11(2), 150-156.
 
Adebowale, K. O., & Lawal, O. S. (2003). Foaming, gelation and electrophoretic characteristics of mucuna bean (Mucuna pruriens) protein concentrates. Food Chemistry, 83(2), 237-246.
Crossref
 
Alikhani, A. H., & Yakhchali, B. (2010). Potential use of Iranian rhizobial strains as plant growth-promoting rhizo-bacteria (PGPR) and effects of selected strains on growth characteristics of wheat, corn and alfalfa. Desert, 14(1), 27-35.
 
Berrada, H., Nouioui, I., Houssaini, M. I., Ghachtouli, N. E., Gtari, M., & Benbrahim, K. F. (2012). Phenotypic and genotypic characterizations of rhizobia isolated from root nodules of multiple legume species native of Fez, Morocco. African Journal of Microbiology Research, 6(25), 5314-5324.
Crossref
 
Brasca, R., Kelterer, A. M., Maeder, M., Alcaráz, M. R., & Culzoni, M. J. (2018). Quantum chemical computation-based strategy for alternating least squares initialization in multivariate curve resolution analysis of spectral-pH data. Microchemical Journal, 140, 183-188.
Crossref
 
Chen, L. S., Figueredo, A., Pedrosa, F. O., & Hungria, M. (2000). Genetic characterization of soybean rhizobia in Paraguay. Applied and Environmental Microbiology, 66(11), 5099-5103.
Crossref
 
Correa, O. S., & Barneix, A. J. (1997). Cellular mechanisms of pH tolerance in Rhizobium loti. World Journal of Microbiology and Biotechnology, 13(2), 153-157.
Crossref
 
Degefu, T., Wolde-meskel, E., Adem, M., Fikre, A., Amede, T., & Ojiewo, C. O. (2018a). Morpho-physiological diversity of rhizobia nodulating pigeon pea (Cajanus cajan L. Mill sp.) growing in Ethiopia. African Journal of Biotechnology, 17(6), 167-177.
Crossref
 
Degefu, T., Wolde-meskel, E., Ataro, Z., Fikre, A., Amede, T., & Ojiewo, C.O., (2018b). Groundnut (Arachis hypogaea L.) and cowpea (Vigna unguiculata L. Walp) growing in Ethiopia are nodulated by diverse rhizobia. African Journal of Microbiology Research,12(9), 200-217.
Crossref
 
Demissie, N., Degefu, T., Ergena, A., & Ojiewo, C. (2018). Phenotypic characteristics of rhizobial and non-rhizobial isolates recovered from root nodules of chickpea (Cicer arietinum L.) grown in Ethiopia. African Journal of Microbiology Research,12(4),73-85.
Crossref
 
Elboutahiri, N., Thami-Alami, I., & Udupa, S.M. (2010). Phenotypic and genetic diversity in Sinorhizobium meliloti and S. medicae from drought and salt affected regions of Morocco. BMC Microbiology, 10(15), 1-13.
Crossref
 
Herridge, D.F., Turpin, J.E., & Robertson, M.J. (2001). Improving nitrogen fixation of crop legumes through breeding and agronomic management: analysis with simulation modelling. Australian Journal of Experimental Agriculture, 41(3), 391-401.
Crossref
 
Hua, S. S. T., Tsai, V. Y., Lichens, G. M., & Noma, A. T. (1982). Accumulation of amino acids in Rhizobium sp. strain WR1001 in response to sodium chloride salinity. Applied and Environmental Microbiology, 44(1), 135-140.
 
Hungria, M., & Vargas, M. A. T. (2000). Environmental factors affecting N2 fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crops Research, 65,151-164.
Crossref
 
Jordan, D. C. (1984). Family III Rhizobiaceae. In: Bergey's Manual of Systematic Bacteriology. Krieg N. R., & Holt J. G. (eds). (Williams and Wilkins, Baltimore). Pp. 234-242.
 
KÜÇÜK, Ç. (2011). Inoculation with Rhizobium spp. in kidney bean (Phaseolus vulgaris L.) varieties. Agriculture, 98 (1), 49-56.
 
Lum, M. R., & Hirsch, A. M. (2004). Overcoming fixed nitrogen deficiency by nodulation. R.M. Goodman (Ed). Encyclopedia of Crop and Plant Sciences. Marcel Dekker, Inc., NY. Pp. 448-451.
Crossref
 
Maâtallah, J., Berraho, E. B., Sanjuan, J., & Lluch, C. (2002). Phenotypic characterization of rhizobia isolated from chickpea (Cicer arietinum) growing in Moroccan soils. Agronomie, 22(3), 321-329.
Crossref
 
Michiels, J., Verreth, C., & Vanderleyden, J. (1994). Effects of temperature stress on bean-nodulating Rhizobium strains. Applied and Environmental Microbiology, 60(4), 1206-1212.
 
Pengelly, B.C., & Maass, B.L. (2001). Lablab purpureus (L.) Sweet diversity, potential use and determination of a core collection of this multipurpose tropical legume. Genetic Resources and Crop Evolution, 48(3), 261-272.
Crossref
 
Rahman, M. H., Khatun, S., Ali, S. R., Yasmin, S., Kamruzzaman, M., & Rashid, M. H. (2018). Morpho-Physiological diversity of root nodule rhizobia from Mimosa (Mimosa pudica L) and Water Mimosa (Neptunia oleracea L). Journal of Bacteriology and Mycology, 5(1), 8p.
 
Saha, A. K., & Haque, M. F. (2005). Effect of inoculation with Rhizobium on nodulation and growth of bean, Dolicohs Lablab. Journal of Life Earth Science, 1(1), 71-74.
 
Sharma, M. P., Srivastava, K., & Sharma, S. K. (2010). Biochemical characterization and metabolic diversity of soybean rhizobia isolated from Malwa region of Central India. Plant, Soil and Environment, 56(8), 375-383.
Crossref
 
Singh, S. K., Jaiswal, S. K., Vaishampayan, A., & Dhar, B. (2013). Physiological behavior and antibiotic response of soybean (Glycine max L.) nodulating rhizobia isolated from Indian soils. African Journal of Microbiology Research, 7(19), 2093-2102.
Crossref
 
Stephen, F. D., & Bohlool, B.B. (1985). Predominance of fast growing Rhizobium japonicum in a soybean field in the People's Republic of China. Applied and environmental microbiology, 50(5), 1171-1176.
 
Vincent, J. M. (1970). A Manual for the Practical Study of root nodule bacteria. Oxford Publication for the International Biological Program (First edition). p.164.
 
Wei, W., Jiang, J., Li, X., Wang, L., & Yang, S. S. (2004). Isolation of saltā€sensitive mutants from Sinorhizobium meliloti and characterization of genes involved in salt tolerance. Letters in Applied Microbiology, 39(3), 278-283.
Crossref
 
Wolde-meskel, E., Terefework, Z., Lindström, K., & Frostegård, Å. (2004). Metabolic and genomic diversity of rhizobia isolated from field standing native and exotic woody legumes in southern Ethiopia. Systematic and Applied Microbiology, 27(5), 603-611.
Crossref
 
Zahran, H. H. (1999). Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiology and Molecular Biology Reviews, 63(4), 968-989.
 
Zhang, X., Harper, R., Karsisto, M., & Lindström, K. (1991). Diversity of Rhizobium bacteria isolated from the root nodules of leguminous trees. International Journal of Systematic and Evolutionary Microbiology, 41(1), 104-113.
Crossref
 
Zhao-Hai, Z., Wen-Xin, C., Yue-Gao, H., Xin-Hua, S., & Dan-Ming, C. (2007). Screening of highly effective Sinorhizobium meliloti strains for 'Vector' alfalfa and testing of its competitive nodulation ability in the field. Pedosphere, 17(2), 219-228.
Crossref