ISSN: 2536-7064
Model: Open Access/Peer Reviewed
DOI: 10.31248/JBBD
Start Year: 2016
Email: jbbd@integrityresjournals.org
https://doi.org/10.31248/JBBD2018.088 | Article Number: EB144B143 | Vol.4 (1) - February 2019
Received Date: 29 November 2018 | Accepted Date: 26 February 2019 | Published Date: 28 February 2019
Authors: Susan R. Brena* , Alpha Grace S. Ferriol , Richie Eve Ragas and Jennifer M. Manangkil
Keywords: Hybrid, pollen collection, pollen storage, pollen viability, pollen germination, pollen tube growth.
Attainment of high seed yield in hybrid rice seed production is a function of the amount of pollen that the male parent can shed during pollination. Low pollen load of the male parent (TG101M) of hybrid rice, Mestiso 19 leads to low seed yield which limits the number of hybrid rice seed growers engaged in its hybrid seed production. Artificial pollination, through collection and storage of sufficient amount of pollen may provide a solution to the problem. Additional pollen artificially loaded onto stigmas of female parent of Mestiso 19 (PRUPTG101) may increase seed yield. The study was conducted during wet and dry season of year 2016 and 2017 at Phil Rice Central Experiment Station to develop technique in pollen collection and storage of TG101M. Pollens were collected at anthesis, 30 minutes and 1 hour after anthesis, then stored in amber glass, paper and ziplock plastics and stored for 24, 48 and 72 hours in 280C, 50C, -50C. Pollens were grown in three different media for pollen viability and germination and viewed under the microscope for pollen tube growth. Pollen viability and germination was high at anthesis and decreased thereafter. Pollen grains grown in media 2 maintained pollen viability even after 1 hour after anthesis. Pollen germination decreased over time regardless of media used. Pollen tube length was consistently high at anthesis when pollen grains were grown in media 2 and 3 only. The length of pollen tube growth from medium 2 differed between 30 min and 1 hour. Less than 50% viable pollen was achieved after 24 hours of storage. Pollen viability and germination decreased beyond 24 hours. To increase the viability of collected pollen from TG101M for possible artificial pollination, grains must be collected at anthesis and stored immediately in amber glass under cold storage at negative 5°C.
Barrow, J. R. (1983). Comparisons among pollen viability measurement methods in cotton. Crop Science, 23, 734-736. Crossref |
||||
Boavida, L. C., McCormick, S. 2007. Temperature as a determinant factor for increased and reproducible in vitro pollen germination in Arabidopsis thaliana. Plant Journal, 52, 570-82. Crossref |
||||
Bolat, I., & Pirlak, L. (1999). An investigation on pollen viability, germination and tube growth in some stone fruits. Turkish Journal of Agriculture and Forestry, 23(4), 383-388. | ||||
Buitink, J., Leprince, O., Hemminga, M. A., & Hoekstra, F. A. (2000). The effects of moisture and temperature on the ageing kinetics of pollen: interpretation based on cytoplasmic mobility. Plant, Cell & Environment, 23(9), 967-974. Crossref |
||||
Buitink, J., Walters-Vertucci, C., Hoekstra, F. A., & Leprince, O. (1996). Calorimetric properties of dehydrating pollen (analysis of a desiccation-tolerant and an intolerant species). Plant Physiology, 111(1), 235-242. Crossref |
||||
Chaudhury, R., Malik, S. K., & Rajan, S. (2010). An improved pollen collection and crtopreservation method for highly recalcitrant tropical fruit species of mango (Mangifera indica L.) and litchi (Litchi chinensis Sonn.) CryoLetters, 31(3), 268-278. | ||||
Connor, K. F., & Towill, L. E. (1993). Pollen-handling protocol and hydration/dehydration characteristics of pollen for application to long-term storage. Euphytica, 68(1-2), 77-84. Crossref |
||||
Craddock, J. H., Reed, S. M., Schlarbaum, S. E., & Sauve, R. J. (2000). Storage of flowering dogwood (Cornus florida L.) pollen. HortScience, 35(1), 108-109. Crossref |
||||
Dafni, A., & Firmage, D. (2000) Pollen viability and longevity: practical, ecological and evolutionary implications. In: Dafni A., Hesse M., Pacini E. (eds) Pollen and Pollination. Springer, Vienna. Pp. 113-132 Crossref |
||||
Dutta, S. K., Srivastav, M., Chaudhary, R., Lal, K., Patil, P., Singh, S. K., & Singh, A. K. (2013). Low temperature storage of mango (Mangifera indica L.) pollen. Scientia Horticulturae, 161, 193-197. Crossref |
||||
Firmage, D. H., & Dafni, A. (2001). Field tests for pollen viability: a comparative approach. Acta Horticulturae, 561, 87-94. Crossref |
||||
Ganeshan, S., Rajasekharan, P. E., Shashikumar, S., & Decruze, W. (2008). Cryopreservation of pollen In: Reed BM, editor. Plant Cryopreservation: A Practical Guide. Springer, New York. Pp. 443-464. Crossref |
||||
Heslop-Harrison, J. S. (1992). Cytological techniques to assess pollen quality. In: Cresti M, Tiezzi A, editors. Sexual Plant Reproduction. Springer Verlag, Heidelberg. Pp. 41–48. Crossref |
||||
Hoekstra, F. A. (1986). Water content in relation to stress in pollen. In: Leopold AC, editor. Membranes, Metabolism and Dry Organisms. Cornell University Press, Ithaca, New York. Pp. 102-122. | ||||
Johri, B., & Vasil, I. K. (1961). Physiology of pollen. The Botanical Review, 27(3), 325-381. Crossref |
||||
Kakani, V. G., Reddy, K. R., Koti, S., Wallace, T. P., Prasad, P. V. V., Reddy, V. R., & Zhao, D. (2005). Differences in in vitro pollen germination and pollen tube growth of cotton cultivars in response to high temperature. Annals of Botany, 96(1), 59-67. Crossref |
||||
Lee, Y. J., Yang, C. M., Chang, K. W., & Shen, Y. (2011). Effects of nitrogen status on leaf anatomy, chlorophyll content and canopy reflectance of paddy rice. Botanical Studies, 52(3), 295-303. | ||||
Matsui, T., Omasa, K., & Horie, T. (1999a). Mechanism of anther dehiscence in rice (Oryza sativa L.). Annals of Botany, 84(4), 501-506. Crossref |
||||
Matsui, T., Omasa, K., & Horie, T. (1999b). Rapid swelling of pollen grains in response to floret opening unfolds anther locules in rice (Oryza sativa L.). Plant Production Science, 2(3), 196-199. Crossref |
||||
Rajasekharan, P. E., & Ganeshan, S. S. (1994). Freeze preservation of rose pollen in liquid nitrogen: feasibility, viability and fertility status after long-term storage. Journal of horticultural science, 69(3), 565-569. Crossref |
||||
Roberts, E. H. (1961). The viability of rice seed in relation to temperature, moisture content, and gaseous environment. Annals of Botany, 25(3), 381-390. Crossref |
||||
Rodriguez‐Enriquez, M. J., Mehdi, S., Dickinson, H. G., & Grant‐Downton, R. T. (2013). A novel method for efficient in vitro germination and tube growth of Arabidopsis thaliana pollen. New Phytologist, 197(2), 668-679. Crossref |
||||
Saoji, A. A., & Rewatkar, K. G. (2015). Studies on pollen storage at different temperature and humidity conditions in Oryza sativa L. International Journal of Researches in Biosciences, Agriculture and Technology, 304-305. | ||||
Shivanna K. R., & Rangaswamy N. S. (1992). Pollen Germination and Pollen Tube Growth in vitro. In: Pollen Biology. Springer, Berlin, Heidelberg. Pp. 5-37. Crossref |
||||
Shivanna K. R., & Sawhney, V. K. (1997). Pollen Biotechnology for Crop Production and Improvement. Cambridge University Press, Cambridge. Pp. 13-84. Crossref |
||||
Shivanna, K. R. (2003). Pollen Biology and Biotechnology. Science Publishers, Inc., USA, Pp. 181-182. | ||||
Shivanna, K. R., Linskens, H. F., & Cresti, M. (1991). Pollen viability and pollen vigor. Theoretical and Applied Genetics, 81(1), 38-42. Crossref |
||||
Stanley, R. G., & Linskens, H. F. (1974). Pollen. Springer-Verlag, Berlin Heidelberg New York. Pp. 56-88. Crossref |
||||
Steer, M. W., & Steer, J. M. (1989). Pollen tube tip growth. New Phytol. Ill: 323-358. | ||||
Suy, T. B. (1979). Contribution of l'etude de la croissance des tubes polliniques chez Gossypium hirsutum L. en function des conditions du milieu. Coton et Fibres Tropicales, 34, 295-300. | ||||
Towill, L. E. (1985). Low temperature and freeze-/vacuum-drying preservation of pollen. In: Kartha KK, editor. Cryopreservation of Plant Cells and Organs. CRC Press, Boca Raton, Florida. Pp. 171-198. | ||||
Towill, L. E. (2004). Pollen storage as a conservation tool. In: Guerrant EO, Havens K, Maunder M, editors. Ex Situ Plant Conservation: Supporting Species Survival in the Wild. Island Press, Washington DC. Pp.180-188. | ||||
Tuinstra, M. R., Wedel, J. (2000). Estimation of pollen viability in grain sorghum. Crop Science, 40, 968-970. Crossref |
||||
van Bilsen, D. G., Hoekstra, F. A., Crowe, L. M., & Crowe, J. H. (1994). Altered phase behavior in membranes of aging dry pollen may cause imbibitional leakage. Plant Physiology, 104(4), 1193-1199. Crossref |
||||
Van Der Walt, I. D., & Littlejohn, G. M. (1996). Storage and viability testing of Protea pollen. Journal of the American Society for Horticultural Science, 121(5), 804-809. Crossref |
||||
Wang, H., & Jiang, L. (2011). Transient expression and analysis of fluorescent reporter proteins in plant pollen tubes. Nature Protocols, 6(4), 419. Crossref |