Integrity Research Journals

ISSN: 2536-7064
Model: Open Access/Peer Reviewed
DOI: 10.31248/JBBD
Start Year: 2016

A study on mosquitoes composition and malaria transmission in some communities in Doma Local Government Area of Nasarawa State, Nigeria   |   Article Number: DB974E322   |   Vol.8 (1) - February 2023

Received Date: 05 February 2023   |   Accepted Date: 27 February 2023  |   Published Date: 28 February 2023

Authors:  Osidoma, E. O.* , Pam, V. A. , Uzoigwe, N. R. , Ombugadu, A. , Omalu, I. C. J. , Maikenti, J. I. , Attah, A. S. , Ashigar, M. A. and Dogo, S. K.

Keywords: Mosquitoes, Malaria, Doma LGA, pyrethrum spray catch, oocyst, sporozoite.

The paucity of information on malaria vectors in rural areas continues to pose a problem in the public health sector in Nigeria. Thus, the study on mosquitoes composition and malaria transmission in some communities in Doma Local Government Area (LGA) of Nasarawa State, Nigeria was carried out between April and July 2021. Indoor resting mosquitoes were collected using standard pyrethrum spray catch (PSC) from 0600 to 0900 hours. The mosquitoes collected were transferred into a well labelled petri-dish and transported to the laboratory for processing. A total of 1,317 mosquitoes were collected which spread across Iwashi 1,132 (85.9%) and Ruttu 185 (14.0%) communities. The results obtained indicate that the Anopheles mosquitoes had a higher abundance of 1,020 (77.4%) mosquitoes of which females constituted 886 (67.3%) of the population collected while the anopheline males accounted for 134 (10.2%). The abundance of mosquitoes in relation to groups, species and sex respectively varied significantly (p < 0.05). A zero (0.0%) sporozoite rate was recorded from the 654 female Anopheles gambiae s. l. dissected, although oocyst was seen in the alimentary canal of 78 (11.9%) mosquitoes which may be an indicator of possible potential transmission. The results obtained from this study call on all the inhabitants of the two selected communities as well as Doma LGA at large to always clear all potential mosquitoes breeding sites. Also, members of the communities should ensure proper protection against vector-human contact by sleeping under insecticide treated bed nets.

Abeku, T. A., Helinski, M. E., Kirby, M. J., Kefyalew, T., Awano, T., Batisso, E., Tesfaye, G., Ssekitooleko, J., Nicholas, S., Erdmanis, L., & Meek, S. R. (2015). Monitoring changes in malaria epidemiology and effectiveness of interventions in Ethiopia and Uganda: beyond Garki project baseline survey. Malaria Journal, 14, Article number 337.
Abdelwhab, O. F., Elaagip, A., Albsheer, M. M., Ahmed, A., Paganotti, G. M., & Abdel Hamid, M. M. (2021). Molecular and morphological identification of suspected Plasmodium vivax vectors in Central and Eastern Sudan. Malaria Journal, 20, Article number 132.
Ahmed, A. M. (2007). A dual effect for the black seed oil on the malaria vector Anopheles gambiae. Enhances immunity and reduce the concomitant reproductive cost. Journal of Entomolology, 4(1), 1-19.
AIRS Nigeria (2013). End of spray report. PMI|Africa IRS (AIRS) Project. Indoor Residual Spraying (IRS 2) Task Order Four. Submitted to: United States Agency for International Development/PMI p. 83.
Akwa, V. L., Binbol, N. L., Samaila, K. I. & Markus, N. D. (2007). Geographical perspective on Nasarawa State. A publication of Geography Department, Nasarawa State University, Keffi, Nigeria.
Bayoh, M. N., Walker, E. D., Kosgei, J., Ombok, M., Olang, G. B., Githeko, A. K., Killeen, G. F., Otieno, P., Desai, M., Lobo, N. F., & Gimnig, J. E. (2014). Persistently high estimates of late night, indoor exposure to malaria vectors despite high coverage of insecticide treated nets. Parasites & vectors, 7, Article number 380.
Braack, L., Hunt, R., Koekemoer, L. L., Gericke, A., Munhenga, G., Haddow, A. D., Becker, P., Okia, M., Kimera, I., & Coetzee, M. (2015). Biting behaviour of African malaria vectors: 1. where do the main vector species bite on the human body? Parasites & Vectors, 8, Article number 76.
Companion Vector-borne Diseases (2022). Mosquitoes are distributed widely throughout the ends of the continents.
Dogara, M., Nock, H., Agbede, R., Ndams, S., & Joseph, K. (2012). Entomological survey of mosquitoes responsible for the transmission of lymphatic filariasis in three endemic villages of Kano state, Nigeria. The Internet Journal of World Health and Societal Politics, 7(2), 1-6.
Elmahdi, Z. A., Nugud, A. A., & Elhassan, I. M. (2012). Estimation of malaria transmission intensity in Sennar state, central Sudan. Eastern Mediterranean Health Journal, 18(9), 951-956.
Ezeigwe, N., Inyama, P.U., Samdi, L.M., Akila, J.D., Awolola, T.S., Mwansat, G.S., Anyawu, G.I., Yayo, A.M., Ebere, N., Chukwuekezie, O., Seyuom, A., Inyang, U., Kafuko, J., Kolyada, L., Fornadel, C. & Norris, L. (2015). Anopheles Species Diversity, Behaviour, and Sporozoite Rates in Six States of Nigeria. American Journal of Tropical Medicine and Hygiene, 93(4), 425-425.
Ezihe, E. K., Egbuche, C. M., Nwankwo, E. N., Ukonze, C., Anumba, J. U., Umenzekwe, C. C., & Ogudu, O. E. (2019). Malaria vector abundance and the incidence of malaria parasite amongst students living in nnamdi azikiwe university hostels. International Journal of Tropical Disease and Health, 37(4), 1-10.
Gillies, M. T., & De Meillon, B. (1968). The anophelinae of Africa south of the Sahara (Ethiopian Zoogeographical Region). Publications of the South African Institute for Medical Research, 54, 1-343.
Gillies, M. T., & Coetzee, M. (1987). A supplement to the anophelinae of Africa South of the Sahara (Afrotropical Region). Johannesburg: The South African Institute for Medical Research. 146pp.
Goupeyou-Youmsi, J., Rakotondranaivo, T., Puchot, N., Peterson, I., Girod, R., Vigan-Womas, I., Paul, R., Ndiath, M. O., & Bourgouin, C. (2020). Differential contribution of Anopheles coustani and Anopheles arabiensis to the transmission of Plasmodium falciparum and Plasmodium vivax in two neighbouring villages of Madagascar. Journal of Parasites & Vectors, 13, Article number 430.
Howell, P. I., & Chadee, D. D. (2007). The influence of house construction on the indoor abundance of mosquitoes. Journal of Vector Ecology, 32(1), 69-74.
Kenea, O., Balkew, M., Tekie, H., Gebre-Michael, T., Deressa, W., Loha, E., Lindtjørn, B., & Overgaard, H. J. (2016). Human-biting activities of Anopheles species in south-central Ethiopia. Parasites & vectors, 9, Article number 527.
Kent, R. J. (2006). The Mosquito of Macha, Zambia. PhD thesis in Johns Hopkins Malaria Research Institute, Department of Molecular Microbiology and Immunology, Johns Hopkins Blomberg School of Public Health, Balti more M.D. USA. 33pp.
Kilama, W. L. (2010). Health research ethics in malaria vector trials in Africa. Malaria Journal, 9, Article number S3.
Kiszewski, A. E., Teffera, Z., Wondafrash, M., Ravesi, M., & Pollack, R. J. (2014). Ecological succession and its impact on malaria vectors and their predators in borrow pits in western Ethiopia. Journal of Vector Ecology, 39(2), 414-423.
Kojin, B. B., & Adelman, Z. N. (2019). The sporozoite's journey through the mosquito: a critical examination of host and parasite factors required for salivary gland invasion. Frontiers in Ecology and Evolution, 7, Article number 284.
Manyi, M., Vajime, C., & Imandeh, G. N. (2014a). Sporozoite infection rate of female Anopheline mosquitoes in Makurdi, an endemic area for malaria in Central Nigeria. International Journal of Entomological Research, 2(2), 103-115.
Manyi, M. M., Imandeh, G. N., & Azua, E. T. (2014b). Vectorial potential of Anopheles and Culex species in the transmission of bancroftian filariasis in the localities of Makurdi, North Central Nigeria. Journal of Entomology and Zoology Studies, 2(5), 171-177.
Muslu, H., Kurt, O., & Özbilgin, A. (2011). Evaluation of mosquito species (Diptera: Culicidae) identified in Manisa province according to their breeding sites and seasonal differences. Turkiye Parazitol Derg. (in Turkish), 35(2), 100-104.
Oduola, A. O., Otubanjo, O. A., Olojede, J. B., Oyewole, I. O., & Awolola, T. S. (2012). Malaria Transmission Risk Indices of three Anopheles species in selected Rural Communities in Oyo State. South-Western Nigeria. International Journal of Tropical Medicine, 7(1), 42-48.
Okorie, P. N., Popoola, K. O. K., Awobifa, O. M., Ibrahim, K. T., & Ademowo, G. O. (2014).Species composition and temporal distribution of mosquito populations in Ibadan, Southwest Nigeria. Journal of Entomology and Zoology Studies, 2(4), 164-169.
Ombugadu, A., Ekawu, R. A., Odey, S. A., Ajah, L., Adejoh, V. A., Micah, E. M., Samuel, M. D., Dogo, K. S., Ahmed, H. O., Ayim, J. O. & Angbalaga, G. A. (2020a). Feeding behaviour of mosquito species in Mararraba-Akunza, Lafia Local Government Area, Nasarawa State, Nigeria. Biomedical Journal of Scientific & Technical Research, 25(1), 18742-18752.
Ombugadu, A., Maikenti, J. I., Maro, S. A., Vincent, S. O., Polycarp, I. A., Pam, V. A., Samuel, M.D., Adejoh, V. A., Attah, A. S., Ahmed, H. O., & Angbalaga, G. A. (2020b). Survey of mosquitoes in students hostels of Federal University of Lafia, Nasarawa State, Nigeria. Biomedical Journal of Scientific & Technical Research, 28(4), 21822-21830.
Ombugadu, A., Jibril, A. B., Mwansat, G. S., Njila, H. L., Attah, A. S., Pam, V. A., Benson, R. F., Maikenti, J. I., Deme, G. G., Echor, B. O., & Nkup, C. D. (2022). Composition and Distribution of Mosquito Vectors in a Peri-Urban Community Surrounding an Institution of Learning in Lafia Metropolis, Nasarawa State, Central Nigeria. Journal of Zoological Research, 4(3), 20-31.
Onyido, A. E., Deezia, N. P. L., Obiukwu, M., & Amadi, E. (2008). Ecology of man-biting mosquitoes in the development site of Nnamdi Azikiwe University Awka, Anambra State South Eastern Nigeria. The Internet Journal of Health, 9(2), 1-7.
Sejvar, J. J. (2018). Zika virus and other emerging arboviral central nervous system infections. Neuro Infectious Diseases, 24(5), 1512-1534.
Service, M. W. (1982). Ecological considerations in the biocontrol strategies against mosquitoes. In: Laird, M. (ed). Biological control strategies of medical and veterinary pests. Praeger New York. 175pp.
Stone, W. J., Eldering, M., van Gemert, G. J., Lanke, K. H., Grignard, L., van de Vegte-Bolmer, M. G., Siebelink-Stoter, R., Graumans, W., Roeffen, W. F., Drakeley, C. J., & Bousema, T. (2013). The relevance and applicability of oocyst prevalence as a read-out for mosquito feeding assays. Scientific Reports, 3, Article number 3418.
Ward, D., Gomes, A. R., Tetteh, K. K., Sepúlveda, N., Gomez, L. F., Campino, S., & Clark, T. G. (2022). Sero-epidemiological study of arbovirus infection following the 2015-2016 Zika virus outbreak in Cabo Verde. Scientific Reports, 12, Article number 11719.
Wernsdorfer, W. H. (1986). Current approaches to malaria chemotherapy and prophylaxis. Parasitology Today, 2(9), 250-253.
WHO (2022). World Malaria Report 2012. Geneva: World Health Organization.
WHO (2020). World Malaria Report of global progress and challenges. Geneva.
WHO (2019). World Malaria Report. 232pp.
WHO (2010). Malaria in the Greater Mekong Subregion: Regional and country profiles: World Health Organization. In WHO Mekong Malaria Programme (013). Malaria entomology and vector control guide FOR Participants. 192p.
WHO (2009). Dengue Guidelines for Diagnosis, Treatment, Prevention and Control. Geneva: World Health Organization.
WHO (2013). Malaria entomology and vector control guide FOR Participants. 192pp.
Williams, J., & Pinto, J. (2012). Training manual on malaria entomology for entomology and vector control technicians (basic level). Integrated vector management of malaria and other infectious diseases task order 2
Yoriyo, K. P., Alo, E. B., Napthali, R. S., Pukuma, S. M., Edward, S. A., & Muhammad, I. (2013). A quantitative study on the population of indoor resting density of mosquito species in four Local Government Areas of Gombe State, Nigeria. Journal of Medical and Biological Sciences, 3(1), 61-67.
Zyzak, M., Loyless, T., Cope, S., Wooster, M., & Day. J. F. (2002). Seasonal abundance of Culex nigripalpus Theobald and Culex salinarius Coquillett in North Florida, USA. Journal of Vector Ecology, 27(1), 155-162.