JOURNAL OF BIOSCIENCE AND BIOTECHNOLOGY DISCOVERY
Integrity Research Journals

ISSN: 2536-7064
Model: Open Access/Peer Reviewed
DOI: 10.31248/JBBD
Start Year: 2016
Email: jbbd@integrityresjournals.org


Molecular characterization of methicillin resistant Staph. aureus from poultry farms in Kano State, Nigeria

https://doi.org/10.31248/JBBD2016.012   |   Article Number: BAFEBDD32   |   Vol.1 (4) - October 2016

Received Date: 08 May 2016   |   Accepted Date: 10 September 2016  |   Published Date: 30 October 2016

Authors:  Bala H. K. , Igwe J. C. , Olayinka B. O. , Olonitola O. S. and Onaolapo J. A.*

Keywords: Methicillin resistance, poultry farms, Staph. Aureus.

There is presently an increased rate of resistance by methicillin resistant Staph. aureus against commonly prescribed antibiotics for Staph aureus infection. This strain of Staph. aureus is not only a problem in clinical sector but also in livestock disease treatment and management as transferability of this resistant gene in zoonotic outbreak might be possible. This study was set out to evaluate the incidence of methicillin resistant Staph. aureus from poultry farms birds and the farm workers, and also to evaluate the likelihood of cross-infection between the birds and the farm workers in Kano State, Nigeria. Samples were collected using standard microbiological techniques. Antibiotic susceptibility was also carried out using disc diffusion method while genes that influence methicillin resistant were evaluated using PCR method. The results showed that out of the 1260 samples collected, 98 isolates were confirmed to be Staph. aureus. The antibiotics susceptibility test results showed that 30.6% (30) of the Staph. aureus isolates were resistant to cefoxitin (a phenotypic test for methicillin resistant) while 69.4% (68) were susceptible. The methicillin resistant isolates were observed to exhibit (100%) resistant to Ampicillin and Amoxicillin, 93.3% to Oxytetracycline, 90% to Chloramphenicol, 80% to Erythromycin, 76.7% to Oxacillin, 63.3% to Trimethroprim/Sulphamethozaxole, 30% to Ciprofloxacin and 26.7% to Gentamicin. The result also showed that 83.3% (25) of the isolates had multiple antibiotic resistance index (MARI) of > 0.3 and were also multidrug resistant (MDR) while 16.7% had MARI ≤ 0.3. The molecular analysis showed that all the isolates were Staph. aureus of 800bp, 66.7% of the MDR isolates harbored MecA gene (162bp), while 33.3% had MecA of 500bp. Further analysis showed that 3 of the 7 housekeeping genes (pta, gmk and yqil) were also present in the MDR isolates at 43.3, 20 and 16.7% respectively while 10% express spa typing. The results also showed that there is a correlation between phenotypic cefoxitin resistance and carriage of MecA gene.

Adelisa L. P., David, H. C., Robert, P. G., Shailen, B., Tonya, S. H., James, S. T., & William, J. M. (1992). National Nosocomial Infections Surveillance System: Methicillin-Resistant Staphylococcus aureus in U.S. Hospitals, 1975–1991. Infection Control and Hospital Epidemiology, 13(10), 582-586.
Crossref
 
Adeyeye, J. O., & Adewale, A. O. (2013). Incidence of Methicillin-Resistant Staphylococcus aureus (MRSA)In a Small Poultry in South West, Nigeria. Journal of Agriculture and Veterinary Science, 5(3), 53-55.
Crossref
 
Cheesbrough, M. (2000). District laboratory practice in tropical countries (Part 11). Cambridge, University Press UK. Pp. 134-143.
 
Cheesbrough, M. (2002). District Laboratory Practice in Tropical countries, Part 2. Cambridge University Press: Pp. 135-159.
 
Clinical Laboratory Standard Institute (CLSI) (2014). Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fourth. This document provides updated tables for the Clinical and Laboratory Standards Institute antimicrobial susceptibility testing standards M02-A11, M07-A9, and M11-A8. 30(1).
 
de Lencastre, H., & Duarte, C. O. (2002) Multiplex PCR Strategy for Rapid Identification of Structural Types and Variants of the mec Element in Methicillin-Resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 46(7), 2155-216.
Crossref
 
Department for Environment, Food & Rural Affairs, Animal Health and Veterinary Laboratories Agency, Department of Health, Public Health England and + others (DH) (2013). Livestock-associated MRSA found at a farm in East Anglia.
Link
 
Enright, M. C., Day, N. P., Davies, C. E., Peacock, S. J., Spate, B. G. (2000). Multilocus sequence typing for characterization of methicillin resistant and methicillin susceptible clones of Staph aureus. Journal of Clinical Microbiology, 38(3), 1008-1015.
 
Feßler, A., Scott, C., Kadlec, K., Ehricht, R., Monecke, S. and Schwarz, S. (2010) Characterization of methicillin-resistant Staphylococcus aureus ST398 from cases of bovine mastitis. Journal of Antimicrobial Chemotherapy 65, 619-625.
Crossref
 
Food and Drug Administration (FDA) (2007). NARMS retail meat annual report, 2007.
Link
 
Friese, A., Schulz, J., Zimmermann, K., Tenhagen, B. A., Fetsch, A., Hartung, J., & Rösler, U. (2013). Occurrence of Livestock-Associated Methicillin-Resistant Staphylococcus aureus in Turkey and Broiler Barns and Contamination of Air and Soil Surfaces in Their Vicinity.Appl. Environ. Microbiol.79(8), 2759-2766
Crossref
 
George, S, Pamela, A. M., Jerome S., Alan, F., Robert, C. M. J., & George, M. E. (2004). Relationship of MIC and Bactericidal Activity to Efficacy of Vancomycin for Treatment of Methicillin-Resistant Staphylococcus aureus Bacteremia. J. Clin. Microbiol. 42(6), 2398-2402
Crossref
 
George, Y. L. (2009). Molecular Pathogenesis of Staphylococcus aureus Infection. Pediatr Res. 65(5 Pt 2), 71R–77R.
 
Goran, H., & Hong, F. (2005). Evaluation of Two New Chromogenic Media, CHROMagar MRSA and S. aureus ID, for Identifying Staphylococcus aureus and Screening Methicillin-Resistant S. aureus. J. Clin. Microbiol. 43(8), 4242-4244.
Crossref
 
Harmsen, D. C., Witte, H., Rothganger, W., Turnwald, D. J. (2003). Typing of methicillin-resistant Staph. aureus in a university hospital setting by using novel software for spa repeat determination and data base management. Journal of Clinical Microbiology, 41, 5442-5448.
Crossref
 
Igwe, J. C., Onaolapo, J. A., Dauda, E. O., & Oladipo, H. O. (2013). Plasmid Conjugation in E. coli and Drug Resistance. Nigeria Journal of Biotechnology; 26(1), 41-49
 
Jhalka, K, Tara, C. S., & Dipendra, T. (2014). Staphylococcus aureus and Staphylococcal Food-Borne Disease: An Ongoing Challenge in Public Health. BioMed Research International, 2014 (2014), 9.
 
Kitai, S., Shimizu, A., Kawano, J., Sato, E., Nakano, C., Uji, T., Kitagawa, H. (2005). Characterization of methicillin-resistant Staphylococcus aureus isolated from retail raw chicken meat in Japan. J. Vet. Med. Sci., 67(1),107-110.
Crossref
 
Klevens, R. M., Melissa, A. M., Joelle, N., Susan, P., Ken, G., Susan, R., Lee, H. H., Ruth, L., Ghinwa, D., John, M. T., Allen, S. C., Elizabeth, R. Z., Gregory, E. F., Linda, K. M., Roberta, B. C., & Scott, K. F. (2007). Invasive Methicillin-Resistant Staphylococcus aureus Infections in the United States. The Journal of the American Medical Association, 298 (15), 1763-1771.
Crossref
 
Lamers, R. P., Stinnett, J. W., Muthukrishnan, G., Parkinson, C. L., Cole, A. M. (2011). Evolutionary Analyses of Staphylococcus aureus Identify Genetic Relationships between Nasal Carriage and Clinical Isolates. PLoS ONE, 6(1), e16426. doi: 10.1371/journal.pone.0016426.
Crossref
 
Lee, J. H. (2006). Occurrence of methicillin-resistant Staphylococcus aureus strains from cattle and chicken, and analyses of their mecA, mecR1 and mecI genes. Vet. Microbiol, 114(1-2), 155-159.
Crossref
 
Lisa, L., Deirdre, S., Helen, M., Mary, V., & Andrew, E. S. (2006). Evaluation of a New Chromogenic Medium, MRSA Select, for Detection of Methicillin-Resistant Staphylococcus aureus. J. Clin. Microbiol., 44(12), 4561-4563.
Crossref
 
Ma, X. X., Ito,T., Tiensasitorn, C., Jamklang, M., Chongtrakool, P., Boyle-Vavra, S., Daum, R. S., & Hiramatsu, K. (2002). Novel type of staphylococcal cassette chromosome mec identified in community-acquired methicillin-resistant Staphylococcus aureus strains. Antimicrob Agents Chemother., 46(4), 1147-1152
Crossref
 
Magiorakos, A. P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G., Harbarth S., Hindler, J. F., Kahlmeter, G., Olsson-Liljequist, B., Paterson, D. L., Rice, L. B., Stelling, J., Struelens, M. J., Vatopoulos, V, Weber, J. T., & Monnet, D. L. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical Microbial Infection, 18, 268-281
Crossref
 
Michael, Z. D., & Robert, S. D. (2010). Community-Associated Methicillin-Resistant Staphylococcus aureus: Epidemiology and Clinical Consequences of an Emerging Epidemic. Clin Microbiol Rev., 23(3), 616-687.
Crossref
 
Mohamed, K. (2013). Prevalence of methicillin-resistant Staphylococcus aureus in poultry meat in Qena, Egypt. Veterinary World, 6(10), 711-715
Crossref
 
Moran, G. J., Krishnadasan, A., Gorwitz, R. J., Fosheim, G. E., McDougal, L. K., Carey, R. B., & Talan, D. A. (2006). Methicillin-resistant S. aureus infections among patients in the emergency department. N Engl. J. Med., 355(7), 666-674.
Crossref
 
Naimi, T. S., LeDell, K. H., Como-Sabetti, K., Borchardt, S. M., Boxrud, D. J., Etienne, J., Johnson,S. K., Vandenesch, F., Fridkin, S., O'Boyle, C., Danila, R. N., Lynfield, R., & Danila, R. N. (2003). Comparison of community-and health care–associated methicillin-resistant Staphylococcus aureus infection. The Journal of the American Medical Association, 290(22), 2976-2984.
Crossref
 
Neela, V., Ghaznavi-Rad, E., Ghasemzadeh-Moghaddam, H., Nor-Shamsudin, M., van Belkum, A. & Karunanidhi, A. (2013). Frequency of methicillin resistant Staphylococcus aureus in the noses of Malaysian chicken farmers and their chicken.Iranian Journal of Veterinary Research, Shiraz University, 14(3), 226-231.
 
Oliveira, D. C., de Lencastre, H. (2011). Methicillin-Resistance in Staphylococcus aureus Is Not Affected by the Overexpression in Trans of the mecA Gene Repressor: A Surprising Observation. PLoS ONE, 6(8), e23287.
Crossref
 
Onaolapo, J. A. (2005). Isolation and identification of Staph. aureus from other microbial contaminants using increased salt concentration media. In: Bacterial Genetics Lecture Note. Department of Pharmaceutics and Pharmaceutical Microbiology, Ahmadu Bello University, Zaria. Unpublished.
 
Paul, S., Bezbarauh, R. L., Roy, M. K., & Ghosh, A. C. (1997). Multiple antibiotic resistance (MAR) index and its reversion in Pseudomonas aeruginosa. Letters in Applied Microbiology, 24,169- 171.
Crossref
 
Sara, E. C., George S., Eli, N. P., Mitchell, J. S., Adolf, W. K., & Yehuda, C. (2003). Comparison of Mortality Associated with Methicillin-Resistant and Methicillin-Susceptible Staphylococcus aureus Bacteremia: A Meta-analysis. Clin Infect Dis., 36(1), 53-59.
Crossref
 
Shopsin, B., Gomez, M., Montgomery, S. O., Smith, D. H., Waddington, M., Dodge, E. E., Bost, A., Riehman, M., Naidich, S., & Kreiswirth, B. N. (1999). Evaluation of ProteinA Gene Polymorphic Region DNA Sequencing for Typing of Staph. aureus Strains. Journal of Clinical Microbiology, 37(11), 3556-356.
 
Suleiman, A, Zaria, L. T, Grema, H. A., & Ahmad, P. (2013). Antimicrobial resistant coagulase positive Staphylococcus aureus from chickens in Maiduguri, Nigeria. Sokoto Journal of Veterinary Sciences, 11(1), 51-55.
Crossref
 
Trish, M. P., & Emily, R. M. S. (2011). Hospital Epidemiology and Infection Control in Acute-Care Settings. Clin. Microbiol. Rev., 24(1), 141-173.
Crossref