ISSN: 2536-7064
Model: Open Access/Peer Reviewed
DOI: 10.31248/JBBD
Start Year: 2016
Email: jbbd@integrityresjournals.org
https://doi.org/10.31248/JBBD2023.184 | Article Number: B5A675872 | Vol.8 (3) - June 2023
Received Date: 27 April 2023 | Accepted Date: 07 June 2023 | Published Date: 30 June 2023
Authors: Avan Erhunmwunsee Dalton* , Ngozi Paulinus Okolie , Ojowu Johhn Ojowu and Faluyi Ezekiel
Keywords: Annonaceous acetogenins, mitochondrial targeting, nanomedicine, transferrin.
Making the optimal cancer treatment choice can be challenging and more challenging is harnessing the therapeutic potential of bioactive molecules isolated from plants. The mitochondrion is the main organelle of oxidative stress in cells. Increased permeability of the inner mitochondrial membrane is a key phenomenon in cell death. The protein transferrin (Tf) was conjugated to the NPs with the role to actively targeting them to the cancerous cells. Peg-GNPs, Tf-GNPs, Peg-G-ACGs and Tf-Peg-G-ACGs were successfully synthesized by probe sonication method and yielded NPs with size about 100 nm, with polydispersity index around 0.20 and a negative zeta potential of about − 30 mV. Mitochondria, isolated from rat liver were exposed to different concentrations of Tf-peg-G-ACGs. Their ability to induce mitochondrial permeability transition (mPT) pore opening were assessed spectrophotometrically. In the absence of CaCl2, Tf-peg-G-ACGs caused a concentration-dependent induction of mPT pore opening by 13, 11.3, 8.7, and 2.7 folds, at concentrations 10, 20,50 and 100 μg/mL, respectively, when compared with the control with no attendant inhibitory activity which was intensified in the presence of Calcium to 22, 19.7, 15 and 8.3 folds at concentrations 10, 20,50 and 100 μg/mL, respectively. Tf-peg-G-ACGs showed improved ability to induced mitochondrial membrane pore opening which can be explored for the treatment of cancer.
Abdul Wahab, S. M., Jantan, I., Haque, M. A., & Arshad, L. (2018). Exploring the Leaves of Annona muricata L. as a Source of Potential Anti-inflammatory and Anticancer Agents. Frontiers in pharmacology, 9, 661. Crossref |
||||
Avan, E. D., Quadry, R. O., Ikenna-Ossai, C. N., & Okolie, N. P. (2018). Effects of Annona muricata Biofunctionalized Gold Nanoparticles on Erythrocyte Osmotic Fragility and Hematological Profile in Rat Model. Covenant Journal of Physical and Life Sciences, 2(1), 33-45 | ||||
Bauer, T. M., & Murphy, E. (2020). Role of Mitochondrial calcium and the permeability transition pore in regulating cell death. Circulation Research, 126(2), 280-293. Crossref |
||||
Bazak, R., Houri, M., El Achy, S., Kamel, S., & Refaat, T. (2015). Cancer active targeting by nanoparticles: a comprehensive review of literature. Journal of Cancer Research and Clinical Oncology, 141(5), 769-784. Crossref |
||||
Biswas, S., Dodwadkar, N. S., Deshpande, P. P., & Torchilin, V. P. (2012). Liposomes loaded with paclitaxel and modified with novel triphenylphosphonium-PEG-PE conjugate possess low toxicity, target mitochondria and demonstrate enhanced antitumor effects in vitro and in vivo. Journal of Controlled Release: Official Journal of the Controlled Release Society, 159(3), 393-402. Crossref |
||||
Bonora, M., Giorgi, C., & Pinton, P. (2022). Molecular mechanisms and consequences of mitochondrial permeability transition. Nature reviews. Molecular cell biology, 23(4), 266-285. Crossref |
||||
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72, 248-254. Crossref |
||||
Cardoso, M. M., Peça, I. N., & Roque, A. C. (2012). Antibody-conjugated nanoparticles for therapeutic applications. Current Medicinal Chemistry, 19(19), 3103-3127. Crossref |
||||
Cheng, W. J., Chuang, K. H., Lo, Y. J., Chen, M., Chen, Y. J., Roffler, S. R., Ho, H. O., Lin, S. Y., & Sheu, M. T. (2022). Bispecific T-cell engagers non-covalently decorated drug-loaded PEGylated nanocarriers for cancer immunochemo-therapy. Journal of Controlled Release: Official Journal of the Controlled Release Society, 344, 235-248. Crossref |
||||
Chenthamara, D., Subramaniam, S., Ramakrishnan, S. G., Krishnaswamy, S., Essa, M. M., Lin, F.-H., & Qoronfleh, M. W. (2019). Therapeutic efficacy of nanoparticles and routes of administration. Biomaterials Research, 23(1),1-29. Crossref |
||||
Choi, C. H., Alabi, C. A., Webster, P., & Davis, M. E. (2010). Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 107(3), 1235-1240. Crossref |
||||
Coria-Téllez, A., Montalvo-Gonzalez, E., Yahia, E., & Obledo--Vázquez, E. (2018). Annona muricata: a comprehensive review on its traditional medicinal uses, phytochemicals, pharmacological activities, mechanisms of action and toxicity. Arabian Journal of Chemistry, 11(5), 662-691. Crossref |
||||
Cryer, A. M., & Thorley, A. J. (2019). Nanotechnology in the diagnosis and treatment of lung cancer. Pharmacology & therapeutics, 198, 189-205. Crossref |
||||
Daniels, T. R., Bernabeu, E., Rodríguez, J. A., Patel, S., Kozman, M., Chiappetta, D. A., Holler, E., Ljubimova, J. Y., Helguera, G., & Penichet, M. L. (2012). The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochimica et biophysica acta, 1820(3), 291-317. Crossref |
||||
Dutta, B., Barick, K. C., & Hassan, P. A. (2021). Recent advances in active targeting of nanomaterials for anticancer drug delivery. Advances in Colloid and Interface Science, 296, 102509. Crossref |
||||
Fang, R. H., Gao, W., & Zhang, L. (2022). Targeting drugs to tumours using cell membrane-coated nanoparticles. Nature Reviews Clinical Oncology, 20(1), 33-48. Crossref |
||||
Gavamukulya, Y., Wamunyokoli, F., & El-Shemy, H. A. (2017). Annona muricata: Is the natural therapy to most disease conditions including cancer growing in our backyard? A systematic review of its research history and future prospects. Asian Pacific Journal of Tropical Medicine, 10(9), 835-848. Crossref |
||||
Gavas, S., Quazi, S., & Karpiński, T. M. (2021). Nanoparticles for cancer therapy: current progress and challenges. Nanoscale Research Letters, 16, Article Number 173. Crossref |
||||
Hong, J., Li, Y., Li, Y., Xiao, Y., Kuang, H., & Wang, X. (2016). Annonaceous acetogenins nanosuspensions stabilized by PCL-PEG block polymer: significantly improved antitumor efficacy. International Journal of Nanomedicine, 11, 3239-3253. Crossref |
||||
Huang, G., & Huang, H. (2018). Application of hyaluronic acid as carriers in drug delivery. Drug Delivery, 25(1), 766-772. Crossref |
||||
Jeong, W. J., Bu, J., Kubiatowicz, L. J., Chen, S. S., Kim, Y., & Hong, S. (2018). Peptide-nanoparticle conjugates: a next generation of diagnostic and therapeutic platforms? Nano Convergence, 5, Article number 38. Crossref |
||||
Johnson, D., & Lardy, H. (1967). [15] Isolation of liver or kidney mitochondria. In Methods in Enzymology (Vol. 10, pp. 94-96). Academic Press. Crossref |
||||
Krishna, A. D. S., Mandraju, R. K., Kishore, G., & Kondapi, A. K. (2009). An efficient targeted drug delivery through apotransferrin loaded nanoparticles. PloS one, 4(10), e7240. Crossref |
||||
Lapidus, R. G., & Sokolove, P. M. (1993). Spermine inhibition of the permeability transition of isolated rat liver mitochondria: an investigation of mechanism. Archives of Biochemistry and Biophysics, 306(1), 246-253. Crossref |
||||
Lee, E. S., Oh, K. T., Kim, D., Youn, Y. S., & Bae, Y. H. (2007). Tumor pH-responsive flower-like micelles of poly(L-lactic acid)-b-poly(ethylene glycol)-b-poly(L-histidine). Journal of Controlled Release: Official Journal of the Controlled Release Society, 123(1), 19-26. Crossref |
||||
Lei, W., Yang, C., Wu, Y., Ru, G., He, X., Tong, X., & Wang, S. (2022). Nanocarriers surface engineered with cell membranes for cancer targeted chemotherapy. Journal of Nanobiotechnology, 20(1),1-21. Crossref |
||||
Li, H., Li, Y., Ao, H., Bi, D., Han, M., Guo, Y., & Wang, X. (2018). Folate-targeting Annonaceous acetogenins nanosuspensions: significantly enhanced antitumor efficacy in HeLa tumor-bearing mice. Drug Delivery, 25(1), 880-887. Crossref |
||||
Liaw, C. C., Wu, T. Y., Chang, F. R., & Wu, Y. C. (2010). Historic perspectives on Annonaceous acetogenins from the chemical bench to preclinical trials. Planta Medica, 76(13), 1390-1404. Crossref |
||||
Liu, M., Wang, L., Lo, Y., Shiu, S. C. C., Kinghorn, A. B., & Tanner, J. A. (2022). Aptamer-enabled nanomaterials for therapeutics, drug targeting and imaging. Cells, 11, Article number 159. Crossref |
||||
Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265-275. Crossref |
||||
Mayle, K. M., Le, A. M., & Kamei, D. T. (2012). The intracellular trafficking pathway of transferrin. Biochimica et Biophysica Acta, 1820(3), 264-281. Crossref |
||||
Moghadamtousi, S. Z., Fadaeinasab, M., Nikzad, S., Mohan, G., Ali, H. M., & Kadir, H. A. (2015). Annona muricata (Annonaceae): A review of its traditional uses, isolated acetogenins and biological activities. International Journal of Molecular Sciences, 16(7), 15625-15658. Crossref |
||||
Moghadamtousi, S. Z., Karimian, H., Rouhollahi, E., Paydar, M., Fadaeinasab, M., & Abdul Kadir, H. (2014). Annona muricata leaves induce G₁ cell cycle arrest and apoptosis through mitochondria-mediated pathway in human HCT-116 and HT-29 colon cancer cells. Journal of Ethnopharmacology, 156, 277-289. Crossref |
||||
Muhamad, N., Plengsuriyakarn, T., & Na-Bangchang, K. (2018). Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: a systematic review. International Journal of Nanomedicine, 13, 3921-3935. Crossref |
||||
National Research Council (2011). Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals. 8th edition. Washington (DC): National Academies Press (US). Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK54050/ | ||||
Nicolas, J., Mura, S., Brambilla, D., Mackiewicz, N., & Couvreur, P. (2013). Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chemical Society Reviews, 42(3), 1147-1235. Crossref |
||||
Nogueira-Librelotto, D. R., Codevilla, C. F., Farooqi, A., & Rolim, C. M. (2017). Transferrin-conjugated nanocarriers as active-targeted drug delivery platforms for cancer therapy. Current Pharmaceutical Design, 23(3), 454-466. Crossref |
||||
Ogun, A. S., & Adeyinka, A. (2022). Biochemistry, transferrin. In StatPearls [Internet]. StatPearls Publishing. Retrieved January 2023 from https://www.ncbi.nlm.nih.gov/books/NBK532928/ | ||||
Olorunsogo, O., Bababunmi, E., & Bassir, O. (1979). The inhibitory effect of N-(phosphonomethyl) glycine in vivo on energy-dependent, phosphate-induced swelling of isolated rat liver mitochondria. Toxicology Letters, 4(4), 303-306. Crossref |
||||
Oyedeji, T. A., Akintehinse, T., Avan, E. D., Soremekun, O. O., Solomon, O. E., & Olorunsogo, O. O. (2017). Extracts of Adenopus breviflorus induce opening of rat liver mitochondrial membrane permeability transition pore. Biokemistri, 29(4), 140-145. | ||||
Pieme, C. A., Kumar, S. G., Dongmo, M. S., Moukette, B. M., Boyoum, F. F., Ngogang, J. Y., & Saxena, A. K. (2014). Antiproliferative activity and induction of apoptosis by Annona muricata (Annonaceae) extract on human cancer cells. BMC complementary and Alternative Medicine, 14, Article number 516. Crossref |
||||
Scheeren, L. E., Nogueira-Librelotto, D. R., Macedo, L. B., de Vargas, J. M., Mitjans, M., Vinardell, M. P., & Rolim, C. M. (2020). Transferrin-conjugated doxorubicin-loaded PLGA nanoparticles with pH-responsive behavior: a synergistic approach for cancer therapy. Journal of Nanoparticle Research, 22, Article number 72. Crossref |
||||
Shen, Y., Li, X., Dong, D., Zhang, B., Xue, Y., & Shang, P. (2018). Transferrin receptor 1 in cancer: a new sight for cancer therapy. American Journal of Cancer Research, 8(6), 916-931. | ||||
Stella, B., Arpicco, S., Peracchia, M. T., Desmaële, D., Hoebeke, J., Renoir, M., D'Angelo, J., Cattel, L., & Couvreur, P. (2000). Design of folic acid-conjugated nanoparticles for drug targeting. Journal of Pharmaceutical Sciences, 89(11), 1452-1464. Crossref |
||||
Sun, L., Yu, J. G., Li, D. Y., Li, J., Yang, X. D., & Yang, S. L. (2001). Determination of annonaceous acetogenins in Annonaceae plants by HPLC. Yao xue xue bao= Acta Pharmaceutica Sinica, 36(9), 683-685. | ||||
Tavano, L., Aiello, R., Ioele, G., Picci, N., & Muzzalupo, R. (2014). Niosomes from glucuronic acid-based surfactant as new carriers for cancer therapy: preparation, characterization and biological properties. Colloids and Surfaces B: Biointerfaces, 118, 7-13. Crossref |
||||
Tian, L., & Bae, Y. H. (2012). Cancer nanomedicines targeting tumor extracellular pH. Colloids and Surfaces B: Biointerfaces, 99, 116-126. Crossref |
||||
Timin, A. S., Postovalova, A. S., Karpov, T. E., Antuganov, D., Bukreeva, A. S., Akhmetova, D. R., Rogova, A. S., Muslimov, A. R., Rodimova, S. A., Kuznetsova, D. S., & Zyuzin, M. V. (2022). Calcium carbonate carriers for combined chemo-and radionuclide therapy of metastatic lung cancer. Journal of Controlled Release, 344, 1-11. Crossref |
||||
Yu, B., Tai, H. C., Xue, W., Lee, L. J., & Lee, R. J. (2010). Receptor-targeted nanocarriers for therapeutic delivery to cancer. Molecular Membrane Biology, 27(7), 286-298. Crossref |
||||
Zhang, X., Huang, G., & Huang, H. (2018). The glyconanoparticle as carrier for drug delivery. Drug Delivery, 25(1), 1840-1845. Crossref |
||||
Zoratti, M., & Szabò, I. (1995). The mitochondrial permeability transition. Biochimica et Biophysica Acta, 1241(2), 139-176. Crossref |