ISSN: 2536-7064
Model: Open Access/Peer Reviewed
DOI: 10.31248/JBBD
Start Year: 2016
Email: jbbd@integrityresjournals.org
https://doi.org/10.31248/JBBD2025.228 | Article Number: A7E487C73 | Vol.10 (1) - April 2025
Received Date: 05 February 2025 | Accepted Date: 26 April 2025 | Published Date: 30 April 2025
Authors: Johnson A. Bamikole , Joseph Omojola , Zahra S. Liman and Ahmed A. Sule
Keywords: Lagos State, Cosmic rays, Industrial areas, nuclear radiation.
This study examined the effects of external background radiation in Lagos State, specifically focusing on six locations: Iganmu, Ilupeju, Apapa, Ikeja, Oregun, and Matori, selected for their frequent industrial activities. Using calibrated Geiger-Muller tubes with MX123-type tubes and a Digilert200 nuclear radiation monitor, we recorded an overall average background radiation level of 0.014 mR/h in these industrial areas. This level is significantly higher than the recommended standard for background radiation by 20%. The elevated background radiation may be from devices and materials used in production processes. We investigated likely sources of background radiation aside from human activities. Consequently, employees working in these industrial facilities may be at risk due to their regular exposure to elevated levels of radiation.
Akingboye, A. S., Ogunyele, A. C., Jimoh, A. T., Adaramoye, O. B., Adeola, A. O., & Ajayi, T. (2021). Radioactivity, radiogenic heat production and environmental radiation risk of the Basement Complex rocks of Akungba-Akoko, southwestern Nigeria: Insights from in situ gamma-ray spectrometry. Environmental Earth Sciences, 80(6), 228. https://doi.org/10.1007/s12665-021-09516-7 |
||||
Chancellor, J., Scott, G., & Sutton, J. (2014). Space radiation: The number one risk to astronaut health beyond low earth orbit. Life, 4(3), 491-510. https://doi.org/10.3390/life4030491 |
||||
Gbarato, O. I., Osimobi, J. C., & Avwiri, G. O (2018). Measurement of background gamma radiation level of Udi, Enugu - South and Ezeagu Local Government Areas of Enugu State, Nigeria. The International Journal of Engineering and Science, 7(6 ver. 1), 62-67. | ||||
Hubert, G. (2016). Analyses of cosmic ray induced-neutron based on spectrometers operated simultaneously at mid-latitude and Antarctica high-altitude stations during quiet solar activity. Astroparticle Physics, 83, 30-39. https://doi.org/10.1016/j.astropartphys.2016.07.002 |
||||
Ibitoye, A. Z., Onah, E. M., Adedokun, M. B., & Ogungbemi, I. K. (2023). Evaluation of radiation safety levels in the monitor rooms of selected diagnostic centres in Lagos State using thermoluminescent dosimeter. Nigerian Journal of Basic and Applied Sciences, 31(1), 80-84. https://doi.org/10.4314/njbas.v31i1.10 |
||||
Jegede, O. A., Olaoye, M. A., Olagbaju, P. O., Makinde, V., & Badawy, W. M. (2024). Radiation risk assessment of quarry pit soil as construction material in Abeokuta, Nigeria: Implications for environmental and public health. Isotopes in Environmental and Health Studies, 60(1), 90-102. https://doi.org/10.1080/10256016.2023.2285002 |
||||
Nwankwo, L. I., & Akoshile, C. O. (2005). Background radiation study of Offa industrial area of Kwara State, Nigeria. Journal of Applied Sciences and Environmental Management, 9(3), 95-98. https://doi.org/10.4314/jasem.v9i3.17360 |
||||
O'Brien, K., Friedberg, W., Sauer, H. H., & Smart, D. F. (1996). Atmospheric cosmic rays and solar energetic particles at aircraft altitudes. Environment international, 22, 9-44. https://doi.org/10.1016/S0160-4120(96)00086-4 |
||||
Ogungbemi, K. I., Adedokun, M. B., Ibitoye, A. Z., Oyebola, O. O., & Owoade, R. L. (2023). Estimation of radiological impact of the activities of Olusosun Dump Site on workers and dwellers of Olusosun, in Lagos Southwest Nigeria. Journal of Radiation Research, 64(1), 53-62. https://doi.org/10.1093/jrr/rrac067 |
||||
Sadiq, A. A, & Agba, E. H. (2011). Background Radiation in Akwanga, Nigeria. Facta Universitatis. Series Working and Living Environmental Protection, 8(1), 7-11. | ||||
Sato, T. (2015). Analytical model for estimating terrestrial cosmic ray fluxes nearly anytime and anywhere in the world: Extension of PARMA/EXPACS. PloS One, 10(12), e0144679. https://doi.org/10.1371/journal.pone.0144679 |
||||
Sato, T., & Niita, K. (2006). Analytical functions to predict cosmic-ray neutron spectra in the atmosphere. Radiation Research, 166(3), 544-555. https://doi.org/10.1667/RR0610.1 |
||||
Sedrati, R., & Bouchachi, D. (2022). Calculation of the atmospheric cosmic ray flux and dosimetry with EXPACS code. Journal of the Korean Physical Society, 80(9), 940-947. https://doi.org/10.1007/s40042-022-00485-z |
||||
Steinhäusler, F. (2005). Radiological impact on man and the environment from the oil and gas industry: Risk assessment for the critical group. In Zaidi, M. K., & Mustafaev I. (eds.). Radiation safety problems in the Caspian Region (Vol. 41, pp. 129-134). Kluwer Academic Publishers. https://doi.org/10.1007/1-4020-2378-2_19 |
||||
United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (1988). Report of the United Nations Scientific Committee on the Effects of Atomic Radiation (p. 78). | ||||
Usikalu, M. R., Orosun, M. M., Akinwumi, A., Babarimisa, I. O., Arijaje, T. E., & Mohammed, A. U. (2024). Environmental radioactivity monitoring and radiological impact assessment of Agbara Industrial Area, Ogun State, Nigeria. Polytechnica, 7(2), 9. https://doi.org/10.1007/s41050-024-00052-4 |
||||
Yusuf, A., San, L. H., Mohammed, M. A., Bute, I. S., Olasehinde, A., Mohammed, A. G., Kwami, I. A., Bello, A. M., Usman, M. B., Sulaiman, M. B., Dalha, A., Abubakar, U., Mukkafa, S., Barka, J., & Mboringong, M. N. (2024). An assessment of the environmental radiation risk from the petrologic units of north-eastern Nigeria; an insight from aero-radiometric data interpretation. Heliyon, 10(19), e38010. https://doi.org/10.1016/j.heliyon.2024.e38010 |