JOURNAL OF BIOSCIENCE AND BIOTECHNOLOGY DISCOVERY
Integrity Research Journals

ISSN: 2536-7064
Model: Open Access/Peer Reviewed
DOI: 10.31248/JBBD
Start Year: 2016
Email: jbbd@integrityresjournals.org


Qualitative assays and quantitative determinations of xylanolytic enzymes of wood rot fungi from Dagaga and Gambo forests, Ethiopia

https://doi.org/10.31248/JBBD2019.101   |   Article Number: A17528362   |   Vol.4 (4) - August 2019

Received Date: 08 July 2019   |   Accepted Date: 14 August 2019  |   Published Date: 30 August 2019

Authors:  Shasho Megersa* and Melaku Alemu

Keywords: Ethiopia, lignocellulosic substrates, xylanase, wood rot fungi.

Xylan is a second widely available polysaccharide in nature and can be enzymatically degraded for the production of sugars. The complete biodegradation of xylan needs synergistic action of different xylanolytic enzymes. In this research, potential xylanolytic activities of the wood rot basidiomycete fungi from Dagaga and Gambo forests were screened. Xylanases of the potential fungi were also quantitatively determined. Clear zones round the cultures on xylan supplemented agar media of isolate 011-1D (Trametes gibbosa) and 030-1D (Phellinus tremulae) were significantly wider than other isolates. The fungal isolates differently responded to the incubation days both in submerged and solid-state fermentations and most isolates gave higher xylanase yield in solid-state fermentation than in submerged fermentation. The enzymes were active and stable in the temperature range of 40 to 55oC and pH range of 4.0 to 6.0. Incubation temperature of 30 to 35oC and pH of 5.0 to 7.0 were found to be suitable for production of the xylanases from the fungal isolates. Among the supplemented carbon sources, carboxymethylcellulose, xylan and sucrose were found suitable for xylanase productions but most isolates differently responded to the nitrogen source supplementations. MgSO4, ZnSO4 and CaCl2 were also found to be suitable divalent metallic ions for the productions of the enzymes. The isolates could be used for hydrolysis lignocellulosic xylan to 5-carbon sugars by optimizing their growth conditions.  

Altaf, S. A., Umar, D. M., & Muhammad, M. S. (2010). Production of xylanase enzyme by Pleurotus eryngii and Flamulina velutipes grown on different carbon sources under submerged fermentation. World Applied Sciences Journal, 8(Special Issue), 47-49.
 
Alvarez-Navarrete, M., López, G. R., García, A. F., López, G. R., & Martínez-Pacheco, M. M. (2015). Selection and molecular identification of fungal isolates that produce xylanolytic enzymes. Genetics and Molecular Research, 14 (3), 8100-8116.
Crossref
 
Bailey, M. J., Biely, P., & Poutanen, K. (1992). Interlaboratory testing of methods for assay of xylanase activity. Journal of Biotechnology, 23(3), 257-270.
Crossref
 
Bibi, Z., Ansari, A., Zohra, R. R., Aman, A., & Ul Qader, S. A. (2014). Production of xylan degrading endo-1, 4-β-xylanase from thermophilic Geobacillus stearothermophilus KIBGE-IB29. Journal of Radiation Research and Applied Sciences, 7(4), 478-485.
Crossref
 
Bilal, T., Malik, B., Rehman, R., & Kumar, M. (2015). Influence of various parameters on cellulase and xylanase production by different strains of Trichoderma Species. Austin Journal of Analytical and Pharmaceutical Chemistry., 2(1), 1-5.
 
Buzała, K. P., Kalinowska, H., Przybysz, P., & Małachowska, E. (2017). Conversion of various types of lignocellulosic biomass to fermentable sugars using kraft pulping and enzymatic hydrolysis. Wood Science and Technology, 51(4), 873-885.
Crossref
 
Damaso, M. C. T., Terzi, S. D. C., Farias, A. X., Oliveira, A. C. P. D., Fraga, M. E., & Couri, S. (2012). Selection of cellulolytic fungi isolated from diverse substrates. Brazilian Archives of Biology and Technology, 55(4), 513-520.
Crossref
 
Das, A., Paul, T., Halder, S. K., Jana, A., Maity, C., Mohapatra, P. K. D., Pati, B. R., & Mondal, K. C. (2013). Production of cellulolytic enzymes by Aspergillus fumigatus ABK9 in wheat bran-rice straw mixed substrate and use of cocktail enzymes for deinking of waste office paper pulp. Bioresource Technology, 128, 290-296.
Crossref
 
Das, N., Dey, D., & Mishra, S. (2015). Isolation and physico-chemical characterization of extracellular lingo-cellulolytic enzymes of Pleurotus pulmonarius in submerged fermentation. International Journal of Applied Biology and Pharmaceutical Technology, 6(3), 15-23.
 
Elisashvili, V., Kachlishvili, E., Tsiklauri, N., Metreveli, E., Khardziani, T., & Agathos, S. N. (2009). Lignocellulose-degrading enzyme production by white-rot Basidiomycetes isolated from the forests of Georgia. World Journal of Microbiology and Biotechnology, 25(2), 331-339.
Crossref
 
Facchini, F. D. A., Vici, A. C., Reis, V. R. A., Jorge, J. A., Terenzi, H. F., Reis, R. A., & de Moraes, M. D. L. T. (2011). Production of fibrolytic enzymes by Aspergillus japonicus C03 using agro-industrial residues with potential application as additives in animal feed. Bioprocess and Biosystems Engineering, 34(3), 347-355.
Crossref
 
Firmani, U., Matuzahroh, N., & Sumarsih, S. (2016). Activity of crude extract cellulase produced by Cellvibrio mixtus UV4 that isolated from Daduk. International Journal of Science Technology & Engineering, 2(7), 245-248.
 
Florencio, C., Couri, S., & Farinas, C. S. (2012). Correlation between agar plate screening and solid-state fermentation for the prediction of cellulase production by Trichoderma strains. Enzyme Research, vol. 2012, Article ID 793708, 7p.
Crossref
 
Garg, G., Mahajan, R., Kaur, A., & Sharma, J. (2011). Xylanase production using agro-residue in solid-state fermentation from Bacillus pumilus ASH for biodelignification of wheat straw pulp. Biodegradation, 22(6), 1143-1154.
Crossref
 
Guan, G.Q., Zhao, P.X., Zhao, J., Wang, M.J., Huo, S.H., Cui, F.J., & Jiang, J.X. (2016). Production and partial characterization of an alkaline xylanase from a novel fungus Cladosporium oxysporum. BioMed Research International, vol. 2016, Article ID 4575024, 7 pages, 2016.
Crossref
 
Guimaraes, N. D. A., Sorgatto, M., Peixoto-Nogueira, S. D., Betini, J. H., Zanoelo, F., Marques, M., ... & Giannesi, G. C. (2013). Bioprocess and biotechnology: effect of xylanase from Aspergillus niger and Aspergillus flavus on pulp biobleaching and enzyme production using agroindustrial residues as substract. SpringerPlus, 2(380), 1-7.
Crossref
 
Hettrich, K., Drechsler, U., Loth, F., & Volkert, B. (2017). Preparation and characterization of water-soluble xylan ethers. Polymers, 9(4), 129.
Crossref
 
Hussain, A., Shrivastav, A., Jain, S. K., Baghel, R. K., Rani, S., & Agrawal, M. K. (2012). Cellulolytic Enzymatic Activity of Soft Rot Filamentous Fungi Paecilomyces variotii. Advances in Bioresearch, 3(3), 10-17.
 
Jadhav, A.R., Girde, A.V., More, S.M., More, S.B., & Khan, S. (2013). Cellulase production by utilizing agricultural wastes. Research Journal of Agriculture and Forestry Sciences, 1(7), 6-9.
 
Juturu, V., & Wu, J. C. (2012). Microbial xylanases: engineering, production and industrial applications. Biotechnology advances, 30(6), 1219-1227.
Crossref
 
Kumar, D., Kumar, S. S., Kumar, J., Kumar, O., Mishra, S. V., Kumar, R., & Malyan, S. K. (2017). Xylanases and their industrial applications: A review. Biochemical and Cellular Archives, 17(1), 353-360.
 
Malhotra, G., & Chapadgaonkar, S. S. (2018). Production and applications of xylanases-an overview. BioTechnologia, 99(1), 59-72.
Crossref
 
Pandey, S., Shahid, M., Srivastava, M., Sharma, A., Singh, A., Kumar, V., & Srivastava, Y. (2014a). Isolation and optimized production of xylanase under solid state fermentation condition from Trichoderma sp. International Journal of Advanced Research, 2(3), 263-273.
 
Pandey, S., Shahid, M., Srivastava, M., Singh, A., Sharma, A., Kumar, V., & Srivastava, M. (2014b). Effect of various physiological parameters and different carbon sources on cellulase and xylanase induction by different strains of Trichoderma Species. Enzyme Engineering, 3(1), 5p. doi:10.4172/2329-6674.1000120.
Crossref
 
Reis, L. D., Ritter, C. E. T., Fontana, R. C., Camassola, M., & Dillon, A. J. P. (2015). Statistical optimization of mineral salt and urea concentration for cellulase and xylanase production by Penicillium echinulatum in submerged fermentation. Brazilian Journal of Chemical Engineering, 32(1), 13-22.
Crossref
 
Sepahy, A. A., Ghazi, S., & Sepahy, M. A. (2011). Cost-effective production and optimization of alkaline xylanase by indigenous Bacillus mojavensis AG137 fermented on agricultural waste. Enzyme Research, vol. 2011, Article ID 593624, 9p.
Crossref
 
Silva, L. A. O., Terrasan, C. R. F., & Carmona, E. C. (2015). Purification and characterization of xylanases from Trichoderma inhamatum. Electronic Journal of Biotechnology, 18(4), 307-313.
Crossref
 
Singh, P., Sulaiman, O., Hashim, R., Peng, L.C., & Singh, R.P. (2012). Biodegradation study of Pycnoporus sanguineus and its effects on structural and chemical features on oil palm biomass chips. Lignocellulose Journal, 1(3), 210-227.
 
Soliman, H. M., Sherief, A. A., & EL-Tanash, A. B. (2012). Production of xylanase by Aspergillus niger and Trichoderma viride using some agriculture residues. International Journal of Agricultural Research, 7(1), 46-57.
Crossref
 
Suleman, M., Bukhari, I. H., & Aujla, M. I. (2016). Production and characterization of xylanase from Aspergillus niger using wheat bran, corn cobs, and sugar cane bagasse as carbon sources with different concentrations. Journal of Bioresource Management, 3(1), Article 2.
Crossref