ISSN: 2536-7064
Model: Open Access/Peer Reviewed
DOI: 10.31248/JBBD
Start Year: 2016
Email: jbbd@integrityresjournals.org
https://doi.org/10.31248/JBBD2025.233 | Article Number: 7BB948A72 | Vol.10 (3) - August 2025
Received Date: 17 April 2025 | Accepted Date: 20 June 2025 | Published Date: 30 August 2025
Authors: Dimalanta, Mitchie A.* , Flores, Rudy C. , Duque, Pedro V. , Salas, Jonathan M. and Dayrit, Arthur D.
Keywords: broiler chicken, microbial fermentation, based-diet, cassava meal, feed ingredient, nutrient profile.
Cassava (Manihot esculenta, Crantz) is extensively grown in tropical areas like the Philippines, yet inefficient post-harvest practices result in substantial losses. Integrating cassava into poultry feed could help curb this waste and lower the rising expenses of poultry nutrition. However, its broader use is still constrained due to its comparatively low protein and amino acid levels, the presence of anti-nutritional elements, and the dusty texture it produces in feed formulations. This study aimed to improve the nutrient content of cassava through microbial fermentation and the addition of amino acids post-fermentation, and evaluated its effects on broiler chicken (Gallus domesticus, L.) growth performance over 21 days. A total of 180 heads of fourteen-day-old broilers were randomly assigned to six treatments replicated three times with 10 broilers in each replication following a Completely Randomised Design (CRD) factorial experiment. Factor A involved two protein-enrichment methods: microbial fermentation (M1) and adding amino acids L-lysine and DL-methionine post-fermentation (M2). Factor B represented different inclusion levels of microbial fermented cassava meal (MFCM): 50%, 55%, and 60%. Chemical laboratory analyses confirmed that synthetic amino acid supplementation (L-lysine and DL-methionine) significantly enhanced crude protein content and metabolizable energy (p<0.01) in MFCM. However, variations in protein enrichment methods and inclusion levels did not considerably affect key performance indicators, including feed intake, weight gain, feed conversion ratio, production cost, dressing percentage, morbidity, and mortality rates (P>0.05). These findings demonstrate that synthetic amino acids significantly improve the crude protein and metabolizable energy content of microbial-fermented cassava. Furthermore, 50%-60% amino acid-enriched MFCM can be incorporated into broiler diets with no negative effect on the performance of broiler chicken. This study highlights the potential of microbial fermented cassava meal as an alternative to ground yellow corn, offering farmers a viable way to utilise other locally available farm produce in broiler production.
Abdel Kader, I. A. T., S Ramadan, A., Saad, M., & S Abdelrasoul, R. A. (2023). Effect of using effective microorganisms (EM) as a growth promoter on broilers performance, thyroid hormones, lipid profile, hepatosomatic index, immune response, enteric pathogens, and antioxidant parameters. Egyptian Poultry Science Journal, 43(2), 259-275. https://doi.org/10.21608/epsj.2023.305125 |
||||
Agunbiade, J. A., Adeyemi, O. A., Adepoju, O. A., & Lawal, O. A. (2002). The use of whole cassava meal and leaf meal in broiler diets. Nigerian Journal of Animal Science, 5(1), 161-173. https://doi.org/10.4314/tjas.v5i1.50000 |
||||
Akapo, A. O., Oso, A. O., Bamgbose, A. M., Sanwo, K. A., Jegede, A. V., Sobayo, R. A., & Olorunsola, R. A. (2014). Effect of feeding cassava (Manihot esculenta, Crantz) root meal on growth performance, hydrocyanide intake and hematological parameters of broiler chicks. Tropical Animal Health and Production, 46(7), 1167-1172. https://doi.org/10.1007/s11250-014-0622-5 PMid:24913764 |
||||
Akinfala, E. O., Matanmi, O., & Tinuala, J. A. (2011). Nutrient characterization of cassava plant meal and its utilization by broiler chickens in the tropics. Livestock Research for Rural Development, 23(11). | ||||
Bhuiyan, M. M., & Iji, P. A. (2015). Energy value of cassava products in broiler chicken diets with or without enzyme supplementation. Asian-Australasian Journal of Animal Sciences, 28(9), 1317-1326. https://doi.org/10.5713/ajas.14.0915 PMid:26194227 PMCid:PMC4554873 |
||||
Borku, A. W. (2025). Cassava (Manihot esculenta Crantz): Its nutritional composition insights for future research and development in Ethiopia. Discover Sustainability, 6(1), 1-17. https://doi.org/10.1007/s43621-025-00996-2 |
||||
Chauynarong, N., Elangovan, A. V., & Iji, P. A. (2009). The potential of cassava products in diets for poultry. World's Poultry Science Journal, 65(1), 23-36. https://doi.org/10.1017/S0043933909000026 |
||||
Deaton, J. W., Branton, S. L., Simmons, J. D., & Lott, B. D. (1996). The effect of brooding temperature on broiler performance. Poultry Science, 75(10), 1217-1220. https://doi.org/10.3382/ps.0751217 PMid:8893297 |
||||
Egbune, E. O., Aganbi, E., Anigboro, A. A., Ezedom, T., Onojakpor, O., Amata, A. I., & Tonukari, N. J. (2023). Biochemical characterization of solid-state fermented cassava roots (Manihot esculenta Crantz) and its application in broiler feed formulation. World Journal of Microbiology and Biotechnology, 39(2), 62. https://doi.org/10.1007/s11274-022-03496-x PMid:36577912 |
||||
EM Research Organization (EMRO) (2025). Merit of using EM products in animal husbandry. Retrieved April 2025 from https://emrojapan.com/animal-husbandry/. | ||||
Hossain, M. A., Amin, J. R., & Hossain, M. E. (2013). Feasibility study of cassava meal in broiler diets by partial replacing energy source (corn) in regard to gross response and carcasstraits. International Journal of Agricultural Research, Innovation and Technology, 3(2), 59-65. https://doi.org/10.3329/ijarit.v3i2.17846 |
||||
Iyayi, E. A., & Losel, D. (2001). Nutritional evaluation of cassava products for poultry feeding. Journal of Applied Animal Research, 19(3), 245-254. | ||||
Jumare, F. I., Salleh, M. M., Ihsan, N., & Hussin, H. (2024). Cassava waste as an animal feed treatment: Past and future. Reviews in Environmental Science and Bio/Technology, 23(3), 839-868. https://doi.org/10.1007/s11157-024-09701-7 |
||||
Lambebo, T., & Deme, T. (2022). Evaluation of nutritional potential and effect of processing on improving nutrient content of cassava (Mannihot esculenta, Crantz) root and leaves. BioRxiv, 2022-02. https://doi.org/10.1101/2022.02.04.479097 |
||||
Manivanh, N. & Preston, T. R. (2015). Protein-enriched cassava root meal improves the growth performance of Moo Lat pigs fed ensiled taro (Colocacia esculenta) foliage and banana stem. Livestock Research for Rural Development, 27, 44. | ||||
Masjoudi, M., Mohseni, M., & Bolton, J. R. (2021). Sensitivity of bacteria, protozoa, viruses, and other microorganisms to ultraviolet radiation. Journal of Research of the National Institute of Standards and Technology, 126, 126021. https://doi.org/10.6028/jres.126.021 PMid:39081635 PMCid:PMC11259122 |
||||
Morgan, N. K., & Choct, M. (2016). Cassava: Nutrient composition and nutritive value in poultry diets. Animal Nutrition, 2(4), 253-261. https://doi.org/10.1016/j.aninu.2016.08.010 PMid:29767067 PMCid:PMC5941045 |
||||
Nwakwor, A. P., Alonge, A. F., Ossom, I. S., & Banjo, R. (2024). Some Physical Properties and Proximate Analysis of Composite Flour (Wheat and Yellow Cassava Flour). In 2024 ASABE Annual International Meeting (p. 1). American Society of Agricultural and Biological Engineers. | ||||
Ogbuewu, I. P., Mabelebele, M., & Mbajiorgu, C. A. (2023). Meta-analysis of blood indices and production physiology of broiler chickens on dietary fermented cassava intervention. Tropical Animal Health and Production, 55(6), 368. https://doi.org/10.1007/s11250-023-03783-1 PMid:37864719 PMCid:PMC10590304 |
||||
Omede, A. A., Ahiwe, E. U., Zhu, Z. Y., Fru-Nji, F., & Iji, P. A. (2017). Improving cassava quality for poultry feeding through application of biotechnology. Cassava, 10, 241-263. https://doi.org/10.5772/intechopen.72236 |
||||
Orji, O. A., & Akukalia, C. M. (2021). Effective microorganism 'EM1' and their effects on performance of pond cat fish (Clariasgariepinus). IOSR J. Environ. Sci. Toxicol. Food Technol, 15, 39-43. | ||||
PHilMech Communications Group (2021). PHilMech spearheads summit to address postharvest losses. Retrieved May 30, 2021 from https://www.philmech.gov.ph/?page=stories&action= storyFullView&recordID=NEPHI2021050006&storyCateg=News&storyYear=2021&storyMonth=5. | ||||
PHILSAN. (2010). Nutrient recommendations for broiler-type chickens. In: Feed Reference Standard. 2nd edition, 127p | ||||
Salas, J. M., Flores, R. C., Gemzon, N. R., Fontanilla, I. D., Buensuceso, C. J. A., Santos, C. J. S., David, K. T., Perez, G. D., & Maquesias, G. S. (2025). Feeding value of amino acids and minerals-enriched banana (Musa sapienta) peel and spent sweet potato (Ipomea batatas) meal-based diets on the laying performance of japanese quail (Coturnix coturnix Japonica). Journal of Animal Science and Veterinary Medicine, 10(1), 91-96. https://doi.org/10.2139/ssrn.5273664 |
||||
Sengxayalth, P., & Preston, T. R. (2017). Fermentation of cassava (Manihot esculenta, Crantz) pulp with yeast, urea and di-ammonium phosphate (DAP). Livestock Research for Rural Development, 29 (9). | ||||
Sleman, S. M., Beski, R. A., & Iji, P.A. (2015). Specialized protein products in broiler chicken nutrition: A review. Animal Nutrition, 1(2), 47-53. https://doi.org/10.1016/j.aninu.2015.05.005 PMid:29766993 PMCid:PMC5884466 |
||||
Sugiharto, S., Yudiarti, T., Isroli, I., Widiastuti, E., Wahyuni, H. I., & Sartono, T. A. (2020). Feeding fermented mixture of cassava pulp and moringa oleifera leaf meal: Effect on growth, internal organ and carcass of broiler chickens. Agriculturae Conspectus Scientificus, 85(1), 87-93. | ||||
Sultana, F., Ali, M. A., & Jahan, I. (2012). Growth performance meat yield and profitability of broiler chickens fed diets incorporating cassava tuber meal. Journal of Environmental Science and Natural Resources, 5(1), 47-53. https://doi.org/10.3329/jesnr.v5i1.11552 |
||||
Wondmeneh, E., Getachew, T., & Dessie, T. (2011). Effect of effective microorganisms (EM®) on the growth parameters of https://doi.org/10.3923/ijps.2011.185.188 |
||||
Fayoumi and Horro chicken. International Journal of Poultry Science, 10(3), 185-188. | ||||
Yasmeen, R., & Ahmad, F. (2025). Microbial fermented agricultural waste-based broiler feed: a sustainable alternative to conventional feed. World's Poultry Science Journal, 81(1), 271-287. https://doi.org/10.1080/00439339.2024.2443222 |
||||
Zuraini, Z., Sanjay, G., & Noresah. M. (2010). Effective microorganism (EM) technology for water quality restoration and potential for sustainable water resources and management. 5th International Congress on Environmental Modelling and Soft wear-Ottawa, Ontario, Canada-July 2010. |