ISSN: 2536-7064
Model: Open Access/Peer Reviewed
DOI: 10.31248/JBBD
Start Year: 2016
Email: jbbd@integrityresjournals.org
https://doi.org/10.31248/JBBD2017.045 | Article Number: 788586173 | Vol.2 (4) - August 2017
Received Date: 21 July 2017 | Accepted Date: 22 August 2017 | Published Date: 30 August 2017
Authors: Kalu Kalu Igwe* , Okezie Victor Ikpeazu and Ifeanyi Edozie Otuokere
Keywords: vascular endothelial growth factor., Global energy, Pazopanib, Axitinib, Sorafenib
Pazopanib and axitinib are ATP-competitive inhibitors of the vascular endothelial growth factor receptor. They have shown to be effective and tolerable treatment options for patients with metastatic renal cell cancer and therefore have been used for the control of this disease. Sorafenib is a kinase inhibitor drug approved for the treatment of primary kidney cancer, advanced primary liver cancer, and radioactive iodine resistant advanced thyroid carcinoma. Global energy, binding sites and molecular interactions between pazopanib, sorafenib and axitinib anticancer drugs with vascular endothelial growth factor (VEGF) was probed to find the best binding energy. The structures of pazopanib, axitinib and sorafenib were drawn and constructed using window based program of Arguslab and ACDlab ChemSketch softwares. Docking studies were performed using the Patch dock and Firedock online software packages. The protein data bank (PDB) files of the crystal structure of VEGF were subjected to refinement protocols. The interactive docking method was carried out for all the conformers of each compound in the selected active site. The docked compound was assigned a score according to its fit in the ligand binding pocket (LBP) and its binding mode. The docked complexes were interpreted using Molecular Molegro viewer software. The best binding energy (minimum energy) is -19.15 Kcal/mol, -22.48 Kcal/mol and -22.37 Kcal/mol for pozapanib, sorafenib and axitinid respectively. The negative value of the binding energy shows that pozapanib, sorafenib and axitinib can selectively inhibit VEGF.
Advanced Chemistry Development (2008) Link |
||||
Andrusier, N., Nussinov, R., & Wolfson, H. J. (2007). FireDock: fast interaction refinement in molecular docking. Proteins, 69(1), 139-159. Crossref |
||||
Ahuja, P., & Singh, K. (2016). In Silico Approach for SAR Analysis of the Predicted Model of DEPDC1B: A Novel Target for Oral Cancer. Advances in Bioinformatics, Pp. 1-8. Crossref |
||||
Escudier, B., Eisen, T., Stadler, W. M., Szczylik, C., Oudard, S., Siebels, M., Negrier, S., Chevreau, C., Solska, E., Desai, A. A., Rolland, F., Demkow, T., Hutson, T. E., Gore, M., Freeman, S., Schwartz, B., Shan, M., Simantov, R., & Bukowski, R. M. (2007). Sorafenib in advanced clear-cell renal-cell carcinoma. New England Journal of Medicine. 356 (2), 125-34. Crossref |
||||
FDA (2007). FDA Approves Nexavar for Patients with Inoperable Liver Cancer, Press release. | ||||
Ikpeazu, O. V., Otuokere, I. E., & Igwe, K.K. (2017). Computational Characterization of the Binding Energy and Interactions between Trimethoprim and Dihydrofolate Reductases of Candida albicans, Staphylococcus aureus and Thermotoga maritima. International Journal of Pharma and Drug Development, 2(2), 52-56. | ||||
Keating, G. M., & Santoro, A. (2009). Sorafenib: a review of its use in advanced hepatocellular carcinoma. Drugs, 69(2), 223-40. Crossref |
||||
Khurana, V., Minocha, M., Pal, D., & Mitra, A. K. (2014). Inhibition of OATP-1B1 and OATP-1B3 by tyrosine kinase inhibitors. Drug Metabol Drug Interact. Pp. 1-11. Crossref |
||||
Mashiach, E., Schneidman-Duhovny, D., Andrusier, N., Nussinov, R., & Wolfson, H. J. (2008). Fire Dock a web server for fast interaction refinement in molecular docking. Nucleic Acid Res., 36, 229-292. Crossref |
||||
Molegro Molecular Viewer (2012). Molegro – a CLC bio company Finlandsgade 10-12 8200 Aarhus N Denmark Link |
||||
Nexavar (Sorafenib) dosing, indications, interactions, adverse effects, and more. Medscape Reference. Link |
||||
Nexavar (Sorafenib) tablet, film coated [Bayer HealthCare Pharmaceuticals Inc.]. DailyMed. Bayer HealthCare Pharmaceuticals Inc. (2013). | ||||
Pick, A. M., & Nystrom, K. K. (2012). Pazopanib for the treatment of metastatic renal cell carcinoma. Clinical Therapeutics. 34(3), 511-520. Crossref |
||||
Product Information Votrient® Tablets (2013). TGA eBusiness Services. GlaxoSmithKline Australia Pty Ltd. 25 (2013). Link |
||||
Rini, B., Rixe, O., Bukowski, R., Michaelson, M. D., Wilding, G., Hudes, G., Bolte, O., Steinfeldt, H., Reich, S. D., & Motzer, R. (2005). AG-013736, a multi-target tyrosine kinase receptor inhibitor, demonstrates anti-tumor activity in a Phase 2 study of cytokine-refractory, metastatic renal cell cancer (RCC). Journal of Clinical Oncology ASCO Annual Meeting Proceedings. 23(16S), 4509. Crossref |
||||
Rugo, H. S., Herbst, R. S., Liu, G., Park, J. W., Kies, M.S., Steinfeldt, H.M., Pithavala, Y. K., Reich, S. D., Freddo, J. L., & Wilding, G. (2005). Phase I trial of the oral antiangiogenesis agent AG-013736 in patients with advanced solid tumors: pharmacokinetic and clinical results. Journal of Clinical Oncology, 23(24), 5474-83. Crossref |
||||
Schöffski, P (2012). Pazopanib in the treatment of soft tissue sarcoma. Expert Review of Anticancer Therapy. 12(6), 711-723. Crossref |
||||
Smalley, K. S., Xiao, M., Villanueva, J., Nguyen, T. K., Flaherty, K. T., Letrero, R., Van Belle, P., Elder, D. E., Wang, Y., Nathanson, K. L., & Herlyn, M. (2009). CRAF inhibition induces apoptosis in melanoma cells with non-V600E BRAF mutations. Oncogene. 28(1), 85-94. Crossref |
||||
Thompson, M. A. ArgusLab 4.0. (2007). Planaria Software LLC, Seattle, WA. Link |
||||
Verweij, J., & Sleijfer, S. (2013). Pazopanib, a new therapy for metastatic soft tissue sarcoma. Expert Opinion on Pharmacotherapy. 14(7), 929-935. Crossref |
||||
Wilmes, L. J., Pallavicini, M. G., Fleming, L. M., Gibbs, J., Wang, D., Li, K. L., Partridge, S. C., Henry, R. G., Shalinsky, D. R., Hu-Lowe, D., Park, J. W., McShane, T. M. Lu, Y., Brasch, R. C., & Hylton, N. M. (2007). AG-013736, a novel inhibitor of VEGF receptor tyrosine kinases, inhibits breast cancer growth and decreases vascular permeability as detected by dynamic contrast-enhanced magnetic resonance imaging. Magnetic Resonance Imaging, 25(3), 319-27. Crossref |
||||
Yadav, S., Pandey, S. K., Singh, V. K., Goel, Y., Kumar, A., & Singh, S.M. (2017) Molecular docking studies of 3-bromopyruvate and its derivatives to metabolic regulatory enzymes: Implication in designing of novel anticancer therapeutic strategies. PLoS ONE, 12(5), e0176403. Crossref |
||||
Zivi, A., Cerbone, L., Recine, F., & Sternberg, C. N. (2012). Safety and tolerability of pazopanib in the treatment of renal cell carcinoma. Expert Opinion on Drug Safety. 11(5), 851-859. Crossref |