ISSN: 2536-7064
Model: Open Access/Peer Reviewed
DOI: 10.31248/JBBD
Start Year: 2016
Email: jbbd@integrityresjournals.org
https://doi.org/10.31248/JBBD2019.107 | Article Number: 437E23825 | Vol.4 (4) - August 2019
Received Date: 04 August 2019 | Accepted Date: 27 August 2019 | Published Date: 30 August 2019
Authors: Adeegbe J. F. , Adewale O. O. , Agboola F. K. and Oyewole O. I.*
Keywords: Ocimum gratissimum, toxicity, Antimicrobial properties, characterization, silver nanoparticles
Ocimum gratissimum leaves were used in the synthesis of silver nanoparticles (AgNps) that were non-toxic and also possessed antimicrobial properties against clinically isolated pathogenic strains. Some bioactive agents in the aqueous extract of Ocimum gratissimum leaves (AEOgL) were identified. AgNp synthesis was carried out by incubating the AEOgL and 1 mM AgNO3. The brownish colour obtained upon reduction of silver by the AEOgL was observed. The phytochemicals present are tannins, glycosides, sterols, phenols, alkaloid and terpenoids. There was the presence of a surface plasmon resonance from the UV-visible scan. The synthesized silver nanoparticles were characterized by UV-visible spectrophotometry, Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscopy/Energy Dispersive Analysis (SEM/EDX) and X-ray diffraction analysis. The SEM/EDX analysis indicated that the morphology of the nanoparticles is of a uniform structure and the size of the AgNp was 20 nm. The AgNps showed excellent antimicrobial activity against clinically isolated multi-drug resistant human pathogens used such as Escherichia coli and Staphylococcus aureus. For most biomarkers in the blood biochemistry analysis, there was no significant difference (p<0.05) between the control and treated groups except for alkaline phosphatase. It can concluded from this study that AgNps synthesized from aqueous extract of Ocimum gratissimum had antimicrobial properties and is also non-toxic at the dosage used.
Aisida, S. O., Ugwu, K., Akpa, P. A., Nwanya, A. C., Ejikeme, P. M., Botha, S., Ahmad, I., Maaza, M., & Ezema, F. I. (2019). Biogenic synthesis and antibacterial activity of controlled silver nanoparticles using an extract of Gongronema Latifolium. Materials Chemistry and Physics, 237, 121859. Crossref |
||||
Anastas, P. T., & Zimmerman, J. B. (2007). Green nanotechnology. Why we need a green nano award and how to make it happen. Center for Green Chemistry and Green Engineering, Yale University, U.S. state. 29p. | ||||
Baron, A. Q. (2015). Introduction to high-resolution inelastic x-ray scattering. arXiv preprint arXiv:1504.01098. | ||||
Bello-Vieda, N., Pastrana, H., Garavito, M., Ávila, A., Celis, A., Muñoz-Castro, A., Restrepo, S., & Hurtado, J. (2018). Antibacterial activities of azole complexes combined with silver nanoparticles. Molecules, 23(2), 361. Crossref |
||||
Braydich-Stolle, L. K., Lucas, B., Schrand, A., Murdock, R. C., Lee, T., Schlager, J. J., & Hofmann, M. C. (2010). Silver nanoparticles disrupt GDNF/Fyn kinase signaling in spermatogonial stem cells. Toxicological Sciences, 116(2), 577-589. Crossref |
||||
Cauerhff, A., & Castro, G.R. (2013). Bionanoparticles: a green chemistry approach. Electronic Journal of Biotechnology, 16(3), 234-241. Crossref |
||||
Chen, X., & Schluesener, H. J. (2008). Nanosilver: a nanoproduct in medical application. Toxicology letters, 176(1), 1-12. Crossref |
||||
Correa, M. P. (1932) Dicictionary of Plant Utilized in Brazil. Ministry of Agriculture, Rio de Janeiro, p. 63. | ||||
Cruickshank, R. (1968). Medical microbiology: A guide to diagnosis and control of infection, 11th (ed), Edinburgh and London: E&S. Livingston Ltd. p. 888. | ||||
Dahl, J. A., Maddux, B. L., & Hutchison, J. E. (2007). Toward greener nanosynthesis. Chemical Reviews, 107(6), 2228-2269. Crossref |
||||
Dibrov, P., Dzioba, J., Gosink, K. K., & Häse, C. C. (2002). Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholerae. Antimicrobial Agents and Chemotherapy, 46(8), 2668-2670. Crossref |
||||
Dziedzic, A., Kubina, R., Bułdak, R., Skonieczna, M., & Cholewa, K. (2016). Silver nanoparticles exhibit the dose-dependent anti-proliferative effect against human squamous carcinoma cells attenuated in the presence of berberine. Molecules, 21(3), 365. Crossref |
||||
Edwards‐Jones, V. (2009). The benefits of silver in hygiene, personal care and healthcare. Letters in Applied Microbiology, 49(2), 147-152. Crossref |
||||
Evans, W. C. (2002). Trease and Evans Pharmacognosy, 9th Edition. Published by Saunders Elsevier. Pp. 553-557. | ||||
Feng, Q. L., Wu, J., Chen, G. Q., Cui, F.Z., Kim, T. N., & Kim, J. O. (2000). A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research, 52(4), 662-668. Crossref |
||||
Harborne, A. J. (1998). Phytochemical methods a guide to modern techniques of plant analysis. Springer Science and Business Media. | ||||
Ho, Y. T., Lu, C. C., Yang, J. S., Chiang, J. H., Li, T. C., Ip, S. W., & Chung, J. G. (2009). Berberine induced apoptosis via promoting the expression of caspase-8,-9 and-3, apoptosis-inducing factor and endonuclease G in SCC-4 human tongue squamous carcinoma cancer cells. Anticancer Research, 29(10), 4063-4070. | ||||
Hutchison, J. E. (2008). Greener Nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology. ACS Nano, 2(3), 395-402. Crossref |
||||
Hyun, J. S., Lee, B. S., Ryu, H. Y., Sung, J. H., Chung, K. H., & Yu, I. J. (2008). Effects of repeated silver nanoparticles exposure on the histological structure and mucins of nasal respiratory mucosa in rats. Toxicology Letters, 182(1-3), 24-28. Crossref |
||||
Ishwarya, R., Vaseeharan, B., Anuradha, R., Rekha, R., Govindarajan, M., Alharbi, N. S., & Benelli, G. (2017). Eco-friendly fabrication of Ag nanostructures using the seed extract of Pedalium murex, an ancient Indian medicinal plant: Histopathological effects on the Zika virus vector Aedes aegypti and inhibition of biofilm-forming pathogenic bacteria. Journal of Photochemistry and Photobiology B: Biology, 174, 133-143. Crossref |
||||
Jebakumar Immanuel Edison, T. N., & Sethuraman, M. G. (2013). Electrocatalytic reduction of benzyl chloride by green synthesized silver nanoparticles using pod extract of Acacia nilotica. ACS Sustainable Chemistry and Engineering, 1(10), 1326-1332. Crossref |
||||
Jo, Y. K., Kim, B. H., & Jung, G. (2009). Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Disease, 93(10), 1037-1043. Crossref |
||||
Kelly, K. L., Coronado, E., Zhao, L. L., and Schatz, G.C. (2003). The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. The Journal of Physical Chemistry B, 107(3), 668-677. Crossref |
||||
Khan, M. Z. H., Tarek, F. K., Nuzat, M., Momin, M. A., & Hasan, M. R. (2017). Rapid biological synthesis of silver nanoparticles from Ocimum sanctum and their characterization. Journal of Nanoscience, vol. 2017, Article ID 1693416, 6 pages. Crossref |
||||
Kim, Y. S., Song, M. Y., Park, J. D., Song, K. S., Ryu, H. R., Chung, Y. H., & Hwang, I. K. (2010). Subchronic oral toxicity of silver nanoparticles. Particle and Fibre Toxicology, 7(1), 20. Crossref |
||||
Lyman, C. E., Newbury, D. E., Goldstein, J., Williams, D. B., Romig Jr, A. D., Armstrong, J., Echlin, P., Fiori, C., Joy, D. C., Lifshin, E., & Peters, K. R. (2012). Scanning electron microscopy, X-ray microanalysis, and analytical electron microscopy: a laboratory workbook. Springer Science & Business Media. | ||||
Mohanpuria, P., Rana, N. K., & Yadav, S. K. (2008). Biosynthesis of nanoparticles: technological concepts and future applications. Journal of Nanoparticle Research, 10(3), 507-517. Crossref |
||||
Nair, B., & Pradeep, T. (2002). Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Crystal Growth and Design, 2(4), 293-298. Crossref |
||||
Narayanan, K. B., & Sakthivel, N. (2010). Biological synthesis of metal nanoparticles by microbes. Advances in Colloid and Interface Science, 156(1-2), 1-13. Crossref |
||||
Onajobi, F. D. (1986). Smooth muscle contracting lipid-soluble principles in chromatographic fractions of Ocimum gratissimum. Journal of Ethnopharmacology, 18(1), 3-11. Crossref |
||||
Sarsar, V., Selwal, K.K., and Selwal, M.K. (2014). Nanosilver: potent antimicrobial agent and its biosynthesis. African Journal of Biotechnology, 13(4), 546-554. Crossref |
||||
Sathishkumar, M., Sneha, K., & Yun, Y. S. (2010). Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity. Bioresource Technology, 101(20), 7958-7965. Crossref |
||||
Schultz, S., Smith, D.R., Mock, J.J., and Schultz, D.A. (2000). Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proceedings of the National Academy of Sciences, 97(3), 996-1001. Crossref |
||||
Shankar, S. S., Rai, A., Ahmad, A., & Sastry, M. (2004). Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science, 275(2), 496-502. Crossref |
||||
Singhal, G., Bhavesh, R., Kasariya, K., Sharma, A. R., & Singh, R. P. (2011). Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. Journal of Nanoparticle Research, 13(7), 2981-2988. Crossref |
||||
Skonieczna, M., & Hudy, D. (2018). Biological activity of Silver Nanoparticles and their applications in Anticancer Therapy. Silver Nanoparticles: Fabrication, Characterization and Applications, 131. Crossref |
||||
Socrates, G. (1980). Infrared characteristic group frequencies. Infrared spectrometry. | ||||
Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of colloid and interface science, 275(1), 177-182. Crossref |
||||
Spadaro, J. A., Berger, T. J., Barranco, S. D., Chapin, S. E., & Becker, R. O. (1974). Antibacterial effects of silver electrodes with weak direct current. Antimicrobial agents and chemotherapy, 6(5), 637-642. Crossref |
||||
Stamplecoskie, K. G., & Scaiano, J. C. (2010). Light emitting diode irradiation can control the morphology and optical properties of silver nanoparticles. Journal of the American Chemical Society, 132(6), 1825-1827. Crossref |
||||
Sung, J. H., Ji, J. H., Park, J. D., Yoon, J. U., Kim, D. S., Jeon, K. S. and Chung, Y. H. (2008). Subchronic inhalation toxicity of silver nanoparticles. Toxicological sciences, 108(2), 452-461. Crossref |
||||
Tang, J., Xiong, L., Wang, S., Wang, J., Liu, L., Li, J., & Xi, T. (2009). Distribution, translocation and accumulation of silver nanoparticles in rats. Journal of Nanoscience and Nanotechnology, 9(8), 4924-4932. Crossref |