JOURNAL OF BIOSCIENCE AND BIOTECHNOLOGY DISCOVERY
Integrity Research Journals

ISSN: 2536-7064
Model: Open Access/Peer Reviewed
DOI: 10.31248/JBBD
Start Year: 2016
Email: jbbd@integrityresjournals.org


Characterization, antimicrobial and toxicological properties of silver nanoparticles synthesized from Ocimum gratissimum leaves

https://doi.org/10.31248/JBBD2019.107   |   Article Number: 437E23825   |   Vol.4 (4) - August 2019

Received Date: 04 August 2019   |   Accepted Date: 27 August 2019  |   Published Date: 30 August 2019

Authors:  Adeegbe J. F. , Adewale O. O. , Agboola F. K. and Oyewole O. I.*

Keywords: Ocimum gratissimum, toxicity, Antimicrobial properties, characterization, silver nanoparticles

Ocimum gratissimum leaves were used in the synthesis of silver nanoparticles (AgNps) that were non-toxic and also possessed antimicrobial properties against clinically isolated pathogenic strains. Some bioactive agents in the aqueous extract of Ocimum gratissimum leaves (AEOgL) were identified. AgNp synthesis was carried out by incubating the AEOgL and 1 mM AgNO3. The brownish colour obtained upon reduction of silver by the AEOgL was observed. The phytochemicals present are tannins, glycosides, sterols, phenols, alkaloid and terpenoids. There was the presence of a surface plasmon resonance from the UV-visible scan. The synthesized silver nanoparticles were characterized by UV-visible spectrophotometry, Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscopy/Energy Dispersive Analysis (SEM/EDX) and X-ray diffraction analysis. The SEM/EDX analysis indicated that the morphology of the nanoparticles is of a uniform structure and the size of the AgNp was 20 nm. The AgNps showed excellent antimicrobial activity against clinically isolated multi-drug resistant human pathogens used such as Escherichia coli and Staphylococcus aureus. For most biomarkers in the blood biochemistry analysis, there was no significant difference (p<0.05) between the control and treated groups except for alkaline phosphatase. It can concluded from this study that AgNps synthesized from aqueous extract of Ocimum gratissimum had antimicrobial properties and is also non-toxic at the dosage used.

Aisida, S. O., Ugwu, K., Akpa, P. A., Nwanya, A. C., Ejikeme, P. M., Botha, S., Ahmad, I., Maaza, M., & Ezema, F. I. (2019). Biogenic synthesis and antibacterial activity of controlled silver nanoparticles using an extract of Gongronema Latifolium. Materials Chemistry and Physics, 237, 121859.
Crossref
 
Anastas, P. T., & Zimmerman, J. B. (2007). Green nanotechnology. Why we need a green nano award and how to make it happen. Center for Green Chemistry and Green Engineering, Yale University, U.S. state. 29p.
 
Baron, A. Q. (2015). Introduction to high-resolution inelastic x-ray scattering. arXiv preprint arXiv:1504.01098.
 
Bello-Vieda, N., Pastrana, H., Garavito, M., Ávila, A., Celis, A., Muñoz-Castro, A., Restrepo, S., & Hurtado, J. (2018). Antibacterial activities of azole complexes combined with silver nanoparticles. Molecules, 23(2), 361.
Crossref
 
Braydich-Stolle, L. K., Lucas, B., Schrand, A., Murdock, R. C., Lee, T., Schlager, J. J., & Hofmann, M. C. (2010). Silver nanoparticles disrupt GDNF/Fyn kinase signaling in spermatogonial stem cells. Toxicological Sciences, 116(2), 577-589.
Crossref
 
Cauerhff, A., & Castro, G.R. (2013). Bionanoparticles: a green chemistry approach. Electronic Journal of Biotechnology, 16(3), 234-241.
Crossref
 
Chen, X., & Schluesener, H. J. (2008). Nanosilver: a nanoproduct in medical application. Toxicology letters, 176(1), 1-12.
Crossref
 
Correa, M. P. (1932) Dicictionary of Plant Utilized in Brazil. Ministry of Agriculture, Rio de Janeiro, p. 63.
 
Cruickshank, R. (1968). Medical microbiology: A guide to diagnosis and control of infection, 11th (ed), Edinburgh and London: E&S. Livingston Ltd. p. 888.
 
Dahl, J. A., Maddux, B. L., & Hutchison, J. E. (2007). Toward greener nanosynthesis. Chemical Reviews, 107(6), 2228-2269.
Crossref
 
Dibrov, P., Dzioba, J., Gosink, K. K., & Häse, C. C. (2002). Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholerae. Antimicrobial Agents and Chemotherapy, 46(8), 2668-2670.
Crossref
 
Dziedzic, A., Kubina, R., Bułdak, R., Skonieczna, M., & Cholewa, K. (2016). Silver nanoparticles exhibit the dose-dependent anti-proliferative effect against human squamous carcinoma cells attenuated in the presence of berberine. Molecules, 21(3), 365.
Crossref
 
Edwards‐Jones, V. (2009). The benefits of silver in hygiene, personal care and healthcare. Letters in Applied Microbiology, 49(2), 147-152.
Crossref
 
Evans, W. C. (2002). Trease and Evans Pharmacognosy, 9th Edition. Published by Saunders Elsevier. Pp. 553-557.
 
Feng, Q. L., Wu, J., Chen, G. Q., Cui, F.Z., Kim, T. N., & Kim, J. O. (2000). A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research, 52(4), 662-668.
Crossref
 
Harborne, A. J. (1998). Phytochemical methods a guide to modern techniques of plant analysis. Springer Science and Business Media.
 
Ho, Y. T., Lu, C. C., Yang, J. S., Chiang, J. H., Li, T. C., Ip, S. W., & Chung, J. G. (2009). Berberine induced apoptosis via promoting the expression of caspase-8,-9 and-3, apoptosis-inducing factor and endonuclease G in SCC-4 human tongue squamous carcinoma cancer cells. Anticancer Research, 29(10), 4063-4070.
 
Hutchison, J. E. (2008). Greener Nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology. ACS Nano, 2(3), 395-402.
Crossref
 
Hyun, J. S., Lee, B. S., Ryu, H. Y., Sung, J. H., Chung, K. H., & Yu, I. J. (2008). Effects of repeated silver nanoparticles exposure on the histological structure and mucins of nasal respiratory mucosa in rats. Toxicology Letters, 182(1-3), 24-28.
Crossref
 
Ishwarya, R., Vaseeharan, B., Anuradha, R., Rekha, R., Govindarajan, M., Alharbi, N. S., & Benelli, G. (2017). Eco-friendly fabrication of Ag nanostructures using the seed extract of Pedalium murex, an ancient Indian medicinal plant: Histopathological effects on the Zika virus vector Aedes aegypti and inhibition of biofilm-forming pathogenic bacteria. Journal of Photochemistry and Photobiology B: Biology, 174, 133-143.
Crossref
 
Jebakumar Immanuel Edison, T. N., & Sethuraman, M. G. (2013). Electrocatalytic reduction of benzyl chloride by green synthesized silver nanoparticles using pod extract of Acacia nilotica. ACS Sustainable Chemistry and Engineering, 1(10), 1326-1332.
Crossref
 
Jo, Y. K., Kim, B. H., & Jung, G. (2009). Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Disease, 93(10), 1037-1043.
Crossref
 
Kelly, K. L., Coronado, E., Zhao, L. L., and Schatz, G.C. (2003). The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. The Journal of Physical Chemistry B, 107(3), 668-677.
Crossref
 
Khan, M. Z. H., Tarek, F. K., Nuzat, M., Momin, M. A., & Hasan, M. R. (2017). Rapid biological synthesis of silver nanoparticles from Ocimum sanctum and their characterization. Journal of Nanoscience, vol. 2017, Article ID 1693416, 6 pages.
Crossref
 
Kim, Y. S., Song, M. Y., Park, J. D., Song, K. S., Ryu, H. R., Chung, Y. H., & Hwang, I. K. (2010). Subchronic oral toxicity of silver nanoparticles. Particle and Fibre Toxicology, 7(1), 20.
Crossref
 
Lyman, C. E., Newbury, D. E., Goldstein, J., Williams, D. B., Romig Jr, A. D., Armstrong, J., Echlin, P., Fiori, C., Joy, D. C., Lifshin, E., & Peters, K. R. (2012). Scanning electron microscopy, X-ray microanalysis, and analytical electron microscopy: a laboratory workbook. Springer Science & Business Media.
 
Mohanpuria, P., Rana, N. K., & Yadav, S. K. (2008). Biosynthesis of nanoparticles: technological concepts and future applications. Journal of Nanoparticle Research, 10(3), 507-517.
Crossref
 
Nair, B., & Pradeep, T. (2002). Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Crystal Growth and Design, 2(4), 293-298.
Crossref
 
Narayanan, K. B., & Sakthivel, N. (2010). Biological synthesis of metal nanoparticles by microbes. Advances in Colloid and Interface Science, 156(1-2), 1-13.
Crossref
 
Onajobi, F. D. (1986). Smooth muscle contracting lipid-soluble principles in chromatographic fractions of Ocimum gratissimum. Journal of Ethnopharmacology, 18(1), 3-11.
Crossref
 
Sarsar, V., Selwal, K.K., and Selwal, M.K. (2014). Nanosilver: potent antimicrobial agent and its biosynthesis. African Journal of Biotechnology, 13(4), 546-554.
Crossref
 
Sathishkumar, M., Sneha, K., & Yun, Y. S. (2010). Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity. Bioresource Technology, 101(20), 7958-7965.
Crossref
 
Schultz, S., Smith, D.R., Mock, J.J., and Schultz, D.A. (2000). Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proceedings of the National Academy of Sciences, 97(3), 996-1001.
Crossref
 
Shankar, S. S., Rai, A., Ahmad, A., & Sastry, M. (2004). Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science, 275(2), 496-502.
Crossref
 
Singhal, G., Bhavesh, R., Kasariya, K., Sharma, A. R., & Singh, R. P. (2011). Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. Journal of Nanoparticle Research, 13(7), 2981-2988.
Crossref
 
Skonieczna, M., & Hudy, D. (2018). Biological activity of Silver Nanoparticles and their applications in Anticancer Therapy. Silver Nanoparticles: Fabrication, Characterization and Applications, 131.
Crossref
 
Socrates, G. (1980). Infrared characteristic group frequencies. Infrared spectrometry.
 
Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of colloid and interface science, 275(1), 177-182.
Crossref
 
Spadaro, J. A., Berger, T. J., Barranco, S. D., Chapin, S. E., & Becker, R. O. (1974). Antibacterial effects of silver electrodes with weak direct current. Antimicrobial agents and chemotherapy, 6(5), 637-642.
Crossref
 
Stamplecoskie, K. G., & Scaiano, J. C. (2010). Light emitting diode irradiation can control the morphology and optical properties of silver nanoparticles. Journal of the American Chemical Society, 132(6), 1825-1827.
Crossref
 
Sung, J. H., Ji, J. H., Park, J. D., Yoon, J. U., Kim, D. S., Jeon, K. S. and Chung, Y. H. (2008). Subchronic inhalation toxicity of silver nanoparticles. Toxicological sciences, 108(2), 452-461.
Crossref
 
Tang, J., Xiong, L., Wang, S., Wang, J., Liu, L., Li, J., & Xi, T. (2009). Distribution, translocation and accumulation of silver nanoparticles in rats. Journal of Nanoscience and Nanotechnology, 9(8), 4924-4932.
Crossref