JOURNAL OF BIOSCIENCE AND BIOTECHNOLOGY DISCOVERY
Integrity Research Journals

ISSN: 2536-7064
Model: Open Access/Peer Reviewed
DOI: 10.31248/JBBD
Start Year: 2016
Email: jbbd@integrityresjournals.org


L-glutamic acid production by immobilized wild and mutant Bacillus species

https://doi.org/10.31248/JBBD2023.174   |   Article Number: 19B355683   |   Vol.8 (2) - April 2023

Received Date: 02 February 2023   |   Accepted Date: 28 March 2023  |   Published Date: 30 April 2023

Authors:  Durojaye O. T.* , Adebayo-Tayo B. C. and Onifade A. D.

Keywords: B. subtilis, B. megaterium, immobilization, L-glutamic acid, mutation, polyurethane foam (PUF).

The effect of Ultra-Violet (UV) irradiation and acridine orange dye on L-glutamic acid producing Bacillus subtilis and B. megaterium was investigated. The selected mutant strains and wild types of B. subtilis and B. megaterium were immobilized and used for L-glutamic acid production. The Bacillus strains were exposed to UV irradiation and treated with acridine orange dye respectively. The survived Bacillus strains were found to reduce as the exposure time and concentration of the mutagens increased in this study. Four mutants of B. subtilis and two mutants of B. megaterium were selected for L-glutamic acid production. Mutant strain of B. subtilis (MAIR4) treated with acridine orange dye yielded the highest L-glutamic acid (4.62 mg/mL) at 72 hours. L-glutamic acid production by mutant wild and strains of B. subtilis and B. megaterium immobilized on sodium alginate, Agar-agar matrix and poly urethane foam ranged from 1.65 to 4.03 mg/mL, 2.04 to 3.98 mg/ mL and 1.89 to 3.39 mg/mL, respectively with B. megaterium (MUSO17) on sodium alginate producing the highest L-glutamic acid. Sodium alginate was the best supporting matrix for the production of L-glutamic acid in this research. Immobilization of mutant strains of Bacillus megaterium (MASO17) exposed to UV irradiation using sodium alginate supported the L-glutamic acid production.

Abou-taleb, Khadiga A. (2014). Enhancing production of amino acids from Bacillus spp. using batch and fed-batch fermentation strategies. British Microbiology Research Journal, 5(3), 257-272.
https://doi.org/10.9734/BMRJ/2015/12447
 
Adebayo-Tayo, B., Agidigbi, O., & Alao, S. (2017). Comparative influence of immobilization medium and mutation on EPS-production by Lactobacillus plantarum MKO2 isolated from fermented milk. Trakia Journal of Sciences, 1, 30-41.
https://doi.org/10.15547/tjs.2017.01.006
 
Ahmed, Y. M., Khan, J. A., Abulnaja, K. A., & Al-Malki, A. L. (2013). Production of glutamic acid by Corynebacterium glutamicum using dates syrup as carbon source. African Journal of Microbiology Reseach. 7(19), 2071-2077
https://doi.org/10.5897/AJMR12.2223
 
Amin Jr, J., Petri, D. F. S., Maia, F. C. B., & Miranda, P. B. (2010). Ultrathin cellulose ester films: preparation, characterization and protein immobilization. Quím. Nova, 33, 2064-2069.
https://doi.org/10.1590/S0100-40422010001000011
 
Ganguly, S. (2019). Isolation, characterization and improvement on a wild strain of Corynebacterium glutamicum for L-glutamic acid production. Journal of Indian Chemistry Sociology, 96, 705-710.
 
Hopwood, D. A. (1970). Chapter VI. The Isolation of mutants. In: Norris, J. R. (ed.). Methods in microbiology (Vol. 3, pp. 363-433). Academic Press.
https://doi.org/10.1016/S0580-9517(08)70544-0
 
Ishola, R. O., & Adebayo-Tayo, B. C. (2018). Mutagenesis and immobilization effect on exopolysaccharide production by Weissella confusa and Lactobacillus delbrueckii. Journal of Advances in Microbiology, 10(2), 1-10.
https://doi.org/10.9734/JAMB/2018/40686
 
Khattab A. A., El-Sherbini A., & Antar N. E. (2018), Generation of new high mutants of Corynebacterium glutamicum for glutamic acid production. Middle East Journal of Applied Sciences 8(2), 436-443.
 
Kinoshita, S., Nakayama, K. & Kitada, S. (1958). Lysine production using microbial auxotroph. The Journal of General and Applied Microbiology, 4(2), 128-129.
https://doi.org/10.2323/jgam.4.128
 
Kirkpatrick, N., Reid, I. D., Ziomek, E., & Paice, M. G. (1990). Biological bleaching of hardwood kraft pulp using Trametes (Coriolus) versicolor immobilized in polyurethane foam. Applied microbiology and biotechnology, 33, 105-108.
https://doi.org/10.1007/BF00170580
 
López, A., Lázaro, N., & Marqués, A. M. (1997). The interphase technique: a simple method of cell immobilization in gel-beads. Journal of microbiological methods, 30(3), 231-234.
https://doi.org/10.1016/S0167-7012(97)00071-7
 
Mrudula, S., & Shyam, N. (2012). Immobilization of Bacillus megaterium MTCC 2444 by Ca-alginate entrapment method for enhanced alkaline protease production. Brazillan Archeology Biological Technology, 55, 135-144.
https://doi.org/10.1590/S1516-89132012000100017
 
Musa, B., Ado S. A., & Abdullahi, I. O. (2016). Comparative study on glutamic acid production by mutant and wild-type strains of Corynebacterium glutamicum Isolated from soil using rice bran as substrate. American Journal of Microbiology and Immunology, 1(2), 16-25.
 
Nakazawa, H., Yamane, I., & Akutsu, E. (1982). U.S. Patent No. 4,334,020. Washington, DC: U.S. Patent and Trademark Office.
 
Paloyan, A. M., Melkonyan, L. H., & Avetisova, G. Y. (2022). Microbial approaches for amino acids production. In Microbial Syntrophy-Mediated Eco-enterprising (pp. 177-208). Academic Press.
https://doi.org/10.1016/B978-0-323-99900-7.00010-9
 
Park, J. K., & Chang, H. N. (2000). Microencapsulation of microbial cells. Biotechnology Advances, 18, 303-319.
https://doi.org/10.1016/S0734-9750(00)00040-9
 
Pasha, S. Y., Ali, M. N, Tabassum, H., & Mohd, M. K. (2011). Comparative studies on production of glutamic acid using wild type, mutants, d cells and d mutants of Corynebacterium glutamicum. International Journal of Engineering Science and Technology, 3, 3941-3949.
 
Shah, A. H., Hameed, A., & Khan, G. M. (2002). Improved microbial production of Lysine by developing a new auxotrophic mutant of Corynebacterium glutamicum. Pakistan Journal of Biological Sciences, 5(1), 80-83.
https://doi.org/10.3923/pjbs.2002.80.83
 
Shyamkumar, R., Moorthy, I. M. G., Ponmurugan, K., & Baskar, R. (2014). Production of L-glutamic acid with Corynebacterium glutamicum (NCIM 2168) and Pseudomonas reptilivora (NCIM 2598): A study on immobilization and reusability. Avicenna Journal of Medical Biotechnology, 6(3), 163-168.
 
Troll, W., & Cannan, R. K. (1953). A modified photometric ninhydrin method for the analysis of amino and imino acids. Journal of Biological Chemistry, 200, 803-811.
https://doi.org/10.1016/S0021-9258(18)71428-2
 
Yugandhar, N. M., Kiran Babu, U., Lalitha, K., Jaya Raju, K., & Sri Rami Reddy, D. (2007). Production of glutamic acid using Brevibacterium roseum with free and d cells. Research Journal of Microbiology, 2, 584-589.
https://doi.org/10.3923/jm.2007.584.589
 
Zelder, O., Klopprogge, C., Schoner, H., Hafner, S., Kroger, B., Kiefer, P., & Heinzle, E. (2005). L-lysine fermentation. WO 05059139A.