JOURNAL OF BIOSCIENCE AND BIOTECHNOLOGY DISCOVERY
Integrity Research Journals

ISSN: 2536-7064
Model: Open Access/Peer Reviewed
DOI: 10.31248/JBBD
Start Year: 2016
Email: jbbd@integrityresjournals.org


Exploratory studies of Anopheles species abundance in five selected communities of Emohua LGA, Rivers State

https://doi.org/10.31248/JBBD2022.163   |   Article Number: 071A15971   |   Vol.7 (3) - October 2022

Received Date: 15 February 2022   |   Accepted Date: 29 September 2022  |   Published Date: 30 October 2022

Authors:  Woke, Vivian Chinasa* , Inyama, Petrus Uchenna , Aribodor, Denis N. , Ebere, Nwabueze , Omalu, Innocent Chukwuemeka James and Eke, Samuel Sunday*

Keywords: insecticides, Emohua, rivers state, Anopheles gambiae s.l, Culex spp

Malaria is one of the public health problems facing people in many parts of Nigeria. To effectively implement malaria control program, baseline studies of species abundance and their susceptibility status to insecticides is required. The aim of the study was to carry out baseline studies on malaria vectors, species abundance and susceptibility status of local malaria vectors in five communities in Emohua Local Government Area of Rivers State. Mosquito larvae were collected from different breeding sites, reared in the insectary and identified morphologically. Data collected were analyzed using SAS software and statistics software GraphPad Software. Spearman’s rank correlation coefficient (RHO) was used in comparing Indoor Resting Density (IRD) and Man Biting Rates (MBR). A Total of 1,415 adult indoor mosquitoes were caught comprising of two (2) genera. Of these, 87.21% were Anopheles gambiae s.l. and 12.79% were Culex spp. There was a statistical difference (p<0.0001) in the distribution of Anopheles and Culex mosquitoes caught. The highest percentage of Anopheles mosquitoes were caught at Emohua 26.74%, followed by Rumuji 22.77%, Egbeda 21.96%, Akpabu 17.10% and the least was Elele 11.43%. Examination of their abdominal conditions to determine feeding frequency indicated that the average number of fed mosquitoes ranged from 0.17-15.13 with a peak of 15.13 in the month of September in Elele. There was a significant difference (p<0.0001) in Indoor Resting Density (IRD) and Man Biting Rate (MBR) in the area. This study has contributed to the understanding of the distribution, composition and indoor resting behaviour of mosquito vectors in the study areas.

Adeleke, M. A., Mafiana, C. F., Idowu, A. B., Sam-Wobo, S. O., & Idowu, O. A. (2010). Population dynamics of indoor sampled mosquitoes and their implication in disease transmission in Abeokuta, south-western Nigeria. Journal of Vector Borne Disease, 47(1), 33-38.
 
Aribodor, D. N., Njoku, O. O., Eneanya, C. I., & Onyali, I. O. (2003). Studies on prevalence of malaria and management practices of the Azia community, Ihiala LGA, Anambra State, South-East Nigeria. Nigerian journal of Parasitology, 24(1), 33-38.
Crossref
 
Awolola, S. T., Adeogun, A. O., Olojede, J. B., Oduola, A. O., Oyewole, I. O., & Amajoh, C. N. (2014). Impact of PermaNet 3.0 on entomological indices in an area of pyrethroid resistant Anopheles gambiae in south-western Nigeria. Parasites & Vectors, 7, Article number 236.
Crossref
 
Awolola, T. S., Brooke, B. D., Hunt, R. H., & Coetzee, M. (2002). Resistance of the malaria vector Anopheles gambiae ss to pyrethroid insecticides, in south-western Nigeria. Annals of Tropical Medicine and Parasitology, 96(8), 849-852.
Crossref
 
Center for Disease Control (2004). Areas where malaria is no longer endemic Florida Medical Entomology Laboratory
 
Florida Mosquito Control White Paper (2009) University of Florida vero Beach FL, USA (accessed Jan. 2015).
 
Emidi, B., Kabula, B., Tungu, P., Massaga, J., & Kisinza, W. (2015). Insecticide resistance testing in malaria vectors in Tanzania: Challenges in mosquito sampling and rearing under field conditions. Rwanda Journal, 2(1), 60-64.
Crossref
 
Gillies M. T., & Coetzee, M. (1987). A supplement to the Anophelinae of Africa south of the Sahara (Afro-tropical region). Johannesberg. Publication of the South Africa Institute of Medical Research, 55, 1-143.
 
Gillies, M. T., & De Meillon, B. (1968). The Anophelinae of Africa south of the Sahara (Ethiopian zoogeographical region). The Anophelinae of Africa south of the Sahara (Ethiopian Zoogeographical Region), 54, 343.
 
Hay, S. I., Guerra, C. A., Gething, P. W., Patil, A. P., Tatem, A. J., Noor, A. M., Kabaria, C. W., Manh, B. H., Elyazar, I. R. F., Brooker, S., & Snow, R. W. (2009). A world malaria map: Plasmodium falciparum endemicity in 2007. PLoS medicine, 6(3), e1000048.
Crossref
 
Jubilate, M., Shandata, M., Ruth, N., Franklin, M., Stephen, M., William, K. (2012). Susceptibility status of malaria vectors to insecticides commonly used for malaria control in Tanzania. Tropical Medicine and International Health,17(6), 742-750.
Crossref
 
Masaninga, F., Daniel, C., Nkhuwa, W., Fastone, M., Shinondo, C., Chanda, E., Mulakwa, K., Kawesha, E. C., Seter, S., & Babaniyi, O. (2012). Mosquito biting and malaria situation in an urban setting in Zambia. Journal of Public Health and Epidemiology, 4(9), 261-269.
Crossref
 
Minakawa, N., Sonye, G., Mogi, M., Githeko, A., & Yan, G. (2002). The effects of climatic factors on the distribution and abundance of malaria vectors in Kenya. Journal of Medical Entomology, 39(6), 833-841.
Crossref
 
Ndams, I. S., Laila, K. M., & Tukur, Z. (2006). Susceptibility of some species of mosquitoes to permethrin pyrethroid in Zaria, Nigeria. Society World Journal, 1(1),15-19.
Crossref
 
NPC (2006). Land mass compiled from NPC Report, 1991 and field reports.
 
Nwankwo, E. N, Okorie, P. N., Acha, C. T., Okonkwo, O. E., Nwangwu, U. C., & Ezihe, E. K. (2017). Insecticide resistance in Anopheles gambiae s.l mosquitoes in Awka, Anambra State, Southeast Nigeria. Journal of Mosquito Research, 7(5), 32-38.
Crossref
 
Oduola, A. O, Idowu, E. T., Oyebola, M. K., Adeogun, A. O., Olojede, J. B., Otubanjo, O. A., & Awolola T. S. (2012). Evidence of carbamate resistance in urban populations of Anopheles gambiae s.s. mosquitoes resistance to DDT and deltamethrin insecticides in Lagos, South-Western Nigeria. Parasite Vectors, 5, Article number 116.
Crossref
 
Oduola, A. O., Obembe, A., Adeogun, A., Awolola, T. S. (2013). Entomological and Transmission Risk Indices of Malaria Vectors In Selected Communities In Osun State, Nigeria. Animal Research International, 10(3), 1805-1808.
 
Okorie, P. N., Ademowo O. G., Irving, H., Kelly-Hope, L. A., & Wondji, C. S. (2015). Insecticide susceptibility of Anopheles coluzzii and Anopheles gambiae mosquitoes in Ibadan, Southwest, Nigeria. Medical Veterinary Entomology, 29(1), 44-50.
Crossref
 
Okorie, P. N., McKenzie, F. E., Ademowo, O. G., Bockarie, M., & Kelly-Hope, L. (2011). Nigeria Anopheles vector database: an overview of 100 years' research. Plos one, 6(12), e28347.
Crossref
 
Okwa, O. O., Carter, V., & Hurd, H. (2007b). Abundance, host preferences and infectivity rates of malaria vectors in Badagry local Government Area of Lagos, Nigeria. Nigerian Journal of Parasitology, 27(1), 41-48.
Crossref
 
Okwa, O. O., Rasheed, A., Adeyemi, A., Omoyeni, M., Oni, L., Fayemi, A., Ogunwomoju, A. (2007a). Anopheles species abundances, composition and vectoral competence in six areas of Lagos: Nigeria. Journal of Cell and Animal Biology, 1(2), 019-023.
 
Ossè, R., Aikpon, R., Padonou, G. G., Olivier Oussou, O., Yadouléton, A., & Martin, A. M. (2012). Evaluation of the efficacy of bendiocarb in indoor residual spraying against pyrethroid resistant malaria vectors in Benin: results of the third campaign. Parasites & Vectors, 5, Article number 163.
Crossref
 
Owusu-Ofori, A. K., Betson, M., Parry, C. M., & Stothard, J. R. (2013). Transfusion-transmitted malaria in Ghana. Clinical Infectious Diseases, 56(12), 1735-41.
Crossref
 
Rowton A. S. (2005). Malaria
Link
 
Sinka, M. E., Bangs, M. J., Manguin, S., Coetzee, M., Mbogo, C. M., Hemingway, J., Patil, A. P., Temperley, W. H., Gething, P. W., Kabaria, C. W., Okara, R. M., Van Boeckel, T., Godfray, H. C. J., Harbach, R. E., & Hay, S. I. (2010). The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: occurrence data, distribution maps and bionomic précis. Parasites & Vectors, 3, Article number 117.
Crossref
 
Sinka, M. E., Bangs, M. J., Manguin, S., Rubio-Palis, Y., Chareonviriyaphap, T., Coetzee, M., Mbogo, C. M., Hemingway, J., Patil, A. P., Temperley, W.H., & Hay, S. I. (2012). A global map of dominant malaria vectors. Parasites & Vectors, 5, Article number 69.
Crossref
 
Tobin-West, C. I., & Babatunde, S. (2012). Community perceptions and practices in management of malaria in under-five children in Rivers State in Nigeria. International Journal of Health Research, 4(4), 127-133.
 
Umar, A., Kabir, B. G., Abdullahi, M. B., Barde, A., Misau, A. A., Sambo, M. L., Babuga, U., & Kobi, M. (2015). Assessment of indoor resting density of female anopheline mosquitoes in human dwelling at malaria vector sentinel sites in Bauchi State, Nigeria. Advanced Studies in Biology, 7(7), 323-333.
Crossref
 
Woodbridge, A. F., & Edward, D. W. (2006). Medical and veterinary entomology: Mosquito. Elsevier Science. Pp. 203-256.
 
World Health Organization (WHO) (1975). WHO technical report 1972-1975 on field research project in epidemiology and control of malaria in Savannah Africa, Kano, Nigerian Genera. MF/TN/72.1MPO/73.1MPD/TN/75.1
 
World Health Organization (WHO) (2002). Indoor residual spraying: Use of indoor residual spraying for scaling up global malaria control and elimination. World Health Organisation.
 
World Health Organization (WHO) (2013). World malaria report 2013. orld Health Organization, Geneva. Pp. 1-286.
 
World Health Organization (WHO) (2003). The Africa malaria report. WHO/CDS/MAL/2003. 1093.2003 WHO. Geneva.