ISSN: 2536-7064
Model: Open Access/Peer Reviewed
DOI: 10.31248/JBBD
Start Year: 2016
Email: jbbd@integrityresjournals.org
https://doi.org/10.31248/JBBD2022.163 | Article Number: 071A15971 | Vol.7 (3) - October 2022
Received Date: 15 February 2022 | Accepted Date: 29 September 2022 | Published Date: 30 October 2022
Authors: Woke, Vivian Chinasa* , Inyama, Petrus Uchenna , Aribodor, Denis N. , Ebere, Nwabueze , Omalu, Innocent Chukwuemeka James and Eke, Samuel Sunday*
Keywords: insecticides, Emohua, rivers state, Anopheles gambiae s.l, Culex spp
Malaria is one of the public health problems facing people in many parts of Nigeria. To effectively implement malaria control program, baseline studies of species abundance and their susceptibility status to insecticides is required. The aim of the study was to carry out baseline studies on malaria vectors, species abundance and susceptibility status of local malaria vectors in five communities in Emohua Local Government Area of Rivers State. Mosquito larvae were collected from different breeding sites, reared in the insectary and identified morphologically. Data collected were analyzed using SAS software and statistics software GraphPad Software. Spearman’s rank correlation coefficient (RHO) was used in comparing Indoor Resting Density (IRD) and Man Biting Rates (MBR). A Total of 1,415 adult indoor mosquitoes were caught comprising of two (2) genera. Of these, 87.21% were Anopheles gambiae s.l. and 12.79% were Culex spp. There was a statistical difference (p<0.0001) in the distribution of Anopheles and Culex mosquitoes caught. The highest percentage of Anopheles mosquitoes were caught at Emohua 26.74%, followed by Rumuji 22.77%, Egbeda 21.96%, Akpabu 17.10% and the least was Elele 11.43%. Examination of their abdominal conditions to determine feeding frequency indicated that the average number of fed mosquitoes ranged from 0.17-15.13 with a peak of 15.13 in the month of September in Elele. There was a significant difference (p<0.0001) in Indoor Resting Density (IRD) and Man Biting Rate (MBR) in the area. This study has contributed to the understanding of the distribution, composition and indoor resting behaviour of mosquito vectors in the study areas.
Adeleke, M. A., Mafiana, C. F., Idowu, A. B., Sam-Wobo, S. O., & Idowu, O. A. (2010). Population dynamics of indoor sampled mosquitoes and their implication in disease transmission in Abeokuta, south-western Nigeria. Journal of Vector Borne Disease, 47(1), 33-38. | ||||
Aribodor, D. N., Njoku, O. O., Eneanya, C. I., & Onyali, I. O. (2003). Studies on prevalence of malaria and management practices of the Azia community, Ihiala LGA, Anambra State, South-East Nigeria. Nigerian journal of Parasitology, 24(1), 33-38. Crossref |
||||
Awolola, S. T., Adeogun, A. O., Olojede, J. B., Oduola, A. O., Oyewole, I. O., & Amajoh, C. N. (2014). Impact of PermaNet 3.0 on entomological indices in an area of pyrethroid resistant Anopheles gambiae in south-western Nigeria. Parasites & Vectors, 7, Article number 236. Crossref |
||||
Awolola, T. S., Brooke, B. D., Hunt, R. H., & Coetzee, M. (2002). Resistance of the malaria vector Anopheles gambiae ss to pyrethroid insecticides, in south-western Nigeria. Annals of Tropical Medicine and Parasitology, 96(8), 849-852. Crossref |
||||
Center for Disease Control (2004). Areas where malaria is no longer endemic Florida Medical Entomology Laboratory | ||||
Florida Mosquito Control White Paper (2009) University of Florida vero Beach FL, USA (accessed Jan. 2015). | ||||
Emidi, B., Kabula, B., Tungu, P., Massaga, J., & Kisinza, W. (2015). Insecticide resistance testing in malaria vectors in Tanzania: Challenges in mosquito sampling and rearing under field conditions. Rwanda Journal, 2(1), 60-64. Crossref |
||||
Gillies M. T., & Coetzee, M. (1987). A supplement to the Anophelinae of Africa south of the Sahara (Afro-tropical region). Johannesberg. Publication of the South Africa Institute of Medical Research, 55, 1-143. | ||||
Gillies, M. T., & De Meillon, B. (1968). The Anophelinae of Africa south of the Sahara (Ethiopian zoogeographical region). The Anophelinae of Africa south of the Sahara (Ethiopian Zoogeographical Region), 54, 343. | ||||
Hay, S. I., Guerra, C. A., Gething, P. W., Patil, A. P., Tatem, A. J., Noor, A. M., Kabaria, C. W., Manh, B. H., Elyazar, I. R. F., Brooker, S., & Snow, R. W. (2009). A world malaria map: Plasmodium falciparum endemicity in 2007. PLoS medicine, 6(3), e1000048. Crossref |
||||
Jubilate, M., Shandata, M., Ruth, N., Franklin, M., Stephen, M., William, K. (2012). Susceptibility status of malaria vectors to insecticides commonly used for malaria control in Tanzania. Tropical Medicine and International Health,17(6), 742-750. Crossref |
||||
Masaninga, F., Daniel, C., Nkhuwa, W., Fastone, M., Shinondo, C., Chanda, E., Mulakwa, K., Kawesha, E. C., Seter, S., & Babaniyi, O. (2012). Mosquito biting and malaria situation in an urban setting in Zambia. Journal of Public Health and Epidemiology, 4(9), 261-269. Crossref |
||||
Minakawa, N., Sonye, G., Mogi, M., Githeko, A., & Yan, G. (2002). The effects of climatic factors on the distribution and abundance of malaria vectors in Kenya. Journal of Medical Entomology, 39(6), 833-841. Crossref |
||||
Ndams, I. S., Laila, K. M., & Tukur, Z. (2006). Susceptibility of some species of mosquitoes to permethrin pyrethroid in Zaria, Nigeria. Society World Journal, 1(1),15-19. Crossref |
||||
NPC (2006). Land mass compiled from NPC Report, 1991 and field reports. | ||||
Nwankwo, E. N, Okorie, P. N., Acha, C. T., Okonkwo, O. E., Nwangwu, U. C., & Ezihe, E. K. (2017). Insecticide resistance in Anopheles gambiae s.l mosquitoes in Awka, Anambra State, Southeast Nigeria. Journal of Mosquito Research, 7(5), 32-38. Crossref |
||||
Oduola, A. O, Idowu, E. T., Oyebola, M. K., Adeogun, A. O., Olojede, J. B., Otubanjo, O. A., & Awolola T. S. (2012). Evidence of carbamate resistance in urban populations of Anopheles gambiae s.s. mosquitoes resistance to DDT and deltamethrin insecticides in Lagos, South-Western Nigeria. Parasite Vectors, 5, Article number 116. Crossref |
||||
Oduola, A. O., Obembe, A., Adeogun, A., Awolola, T. S. (2013). Entomological and Transmission Risk Indices of Malaria Vectors In Selected Communities In Osun State, Nigeria. Animal Research International, 10(3), 1805-1808. | ||||
Okorie, P. N., Ademowo O. G., Irving, H., Kelly-Hope, L. A., & Wondji, C. S. (2015). Insecticide susceptibility of Anopheles coluzzii and Anopheles gambiae mosquitoes in Ibadan, Southwest, Nigeria. Medical Veterinary Entomology, 29(1), 44-50. Crossref |
||||
Okorie, P. N., McKenzie, F. E., Ademowo, O. G., Bockarie, M., & Kelly-Hope, L. (2011). Nigeria Anopheles vector database: an overview of 100 years' research. Plos one, 6(12), e28347. Crossref |
||||
Okwa, O. O., Carter, V., & Hurd, H. (2007b). Abundance, host preferences and infectivity rates of malaria vectors in Badagry local Government Area of Lagos, Nigeria. Nigerian Journal of Parasitology, 27(1), 41-48. Crossref |
||||
Okwa, O. O., Rasheed, A., Adeyemi, A., Omoyeni, M., Oni, L., Fayemi, A., Ogunwomoju, A. (2007a). Anopheles species abundances, composition and vectoral competence in six areas of Lagos: Nigeria. Journal of Cell and Animal Biology, 1(2), 019-023. | ||||
Ossè, R., Aikpon, R., Padonou, G. G., Olivier Oussou, O., Yadouléton, A., & Martin, A. M. (2012). Evaluation of the efficacy of bendiocarb in indoor residual spraying against pyrethroid resistant malaria vectors in Benin: results of the third campaign. Parasites & Vectors, 5, Article number 163. Crossref |
||||
Owusu-Ofori, A. K., Betson, M., Parry, C. M., & Stothard, J. R. (2013). Transfusion-transmitted malaria in Ghana. Clinical Infectious Diseases, 56(12), 1735-41. Crossref |
||||
Rowton A. S. (2005). Malaria Link |
||||
Sinka, M. E., Bangs, M. J., Manguin, S., Coetzee, M., Mbogo, C. M., Hemingway, J., Patil, A. P., Temperley, W. H., Gething, P. W., Kabaria, C. W., Okara, R. M., Van Boeckel, T., Godfray, H. C. J., Harbach, R. E., & Hay, S. I. (2010). The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: occurrence data, distribution maps and bionomic précis. Parasites & Vectors, 3, Article number 117. Crossref |
||||
Sinka, M. E., Bangs, M. J., Manguin, S., Rubio-Palis, Y., Chareonviriyaphap, T., Coetzee, M., Mbogo, C. M., Hemingway, J., Patil, A. P., Temperley, W.H., & Hay, S. I. (2012). A global map of dominant malaria vectors. Parasites & Vectors, 5, Article number 69. Crossref |
||||
Tobin-West, C. I., & Babatunde, S. (2012). Community perceptions and practices in management of malaria in under-five children in Rivers State in Nigeria. International Journal of Health Research, 4(4), 127-133. | ||||
Umar, A., Kabir, B. G., Abdullahi, M. B., Barde, A., Misau, A. A., Sambo, M. L., Babuga, U., & Kobi, M. (2015). Assessment of indoor resting density of female anopheline mosquitoes in human dwelling at malaria vector sentinel sites in Bauchi State, Nigeria. Advanced Studies in Biology, 7(7), 323-333. Crossref |
||||
Woodbridge, A. F., & Edward, D. W. (2006). Medical and veterinary entomology: Mosquito. Elsevier Science. Pp. 203-256. | ||||
World Health Organization (WHO) (1975). WHO technical report 1972-1975 on field research project in epidemiology and control of malaria in Savannah Africa, Kano, Nigerian Genera. MF/TN/72.1MPO/73.1MPD/TN/75.1 | ||||
World Health Organization (WHO) (2002). Indoor residual spraying: Use of indoor residual spraying for scaling up global malaria control and elimination. World Health Organisation. | ||||
World Health Organization (WHO) (2013). World malaria report 2013. orld Health Organization, Geneva. Pp. 1-286. | ||||
World Health Organization (WHO) (2003). The Africa malaria report. WHO/CDS/MAL/2003. 1093.2003 WHO. Geneva. |