JOURNAL OF BIOSCIENCE AND BIOTECHNOLOGY DISCOVERY
Integrity Research Journals

ISSN: 2536-7064
Model: Open Access/Peer Reviewed
DOI: 10.31248/JBBD
Start Year: 2016
Email: jbbd@integrityresjournals.org


Role of oxidase and antioxidant enzymes in neutrophils and blood circulation in patients with acute coronary syndrome

https://doi.org/10.31248/JBBD2022.172   |   Article Number: 020890351   |   Vol.8 (1) - February 2023

Received Date: 12 December 2022   |   Accepted Date: 27 January 2023  |   Published Date: 28 February 2023

Authors:  Md. Rashedul Islam , Md. Ahsan Habib , Fahmida Akter Lia and Laila Noor Islam*

Keywords: Acute coronary syndrome, catalase, neutrophils, myeloperoxidase, NADPH oxidase, superoxidase dismutase.

Acute coronary syndrome (ACS), a subcategory of cardiovascular diseases, has become a major cause of mortality and morbidity worldwide. Oxidative stress resulting from increased production of reactive oxygen species and decreased antioxidants plays a major role in the pathophysiology of ACS. This study evaluated the activities of certain oxidase and antioxidant enzymes in circulation and neutrophils to determine their roles in increased oxidative stress in patients with ACS. A total of 52 patients with ACS admitted in the coronary care unit of two tertiary hospitals and 52 healthy controls were enrolled. Blood samples were collected from all subjects, and various oxidase and antioxidant enzymes in neutrophils and circulation were assayed. The patients had significantly higher white blood cell and neutrophil counts than the controls. In patients, the mean (±SD) serum activities of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (12.83±6.6 U/L) and superoxidase dismutase (4.34±1.41 U/mL) were significantly higher than in the control group (4.88±3.03 U/L and 3.02±1.7 U/mL, respectively) while the catalase had significantly lower activities (33.36±13.16 U/mL vs. 63.98±31.86 U/mL). In neutrophils, the activities of myeloperoxidase, NADPH oxidase and catalase were significantly higher in ACS patients, while superoxidase dismutase was significantly lower. Further, significant positive correlations were found between activities of myeloperoxidase and catalase, and NADPH oxidase and superoxidase dismutase in neutrophils of ACS patients. These findings revealed that higher activities of myeloperoxidase and NADPH oxidase, both in serum and neutrophils, lead to increased oxidative stress and form the inflammatory basis of ACS, and the antioxidant enzymes combat the events.

Asmat, U., Abad, K., & Ismail, K. (2016). Diabetes mellitus and oxidative stress - A concise review. Saudi Pharmaceutical Journal, 24(5), 547-553.
Crossref
 
Becker, L. B. (2004). New concepts in reactive oxygen species and cardiovascular reperfusion physiology. Cardiovascular Research, 61(3), 461-470.
Crossref
 
Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S., & Kalayci, O. (2012). Oxidative stress and antioxidant defense. The World Allergy Organization Journal, 5(1), 9-19.
Crossref
 
Bonaventura, A., & Montecucco, F. (2019). Inflammation and pericarditis: Are neutrophils actors behind the scenes? Journal of Cellular Physiology, 234(5), 5390-5398.
Crossref
 
Bradley, P. P., Priebat, D. A., Christensen, R. D., & Rothstein, G. (1982). Measurement of cutaneous inflammation: Estimation of neutrophil content with an enzyme marker. The Journal of Investigative Dermatology, 78(3), 206-209.
Crossref
 
Carbone, F., Bonaventura, A. & Montecucco, F. (2019). Neutrophil-related oxidants drive heart and brain remodeling after ischemia/reperfusion injury. Frontiers in Physiology, 10, 1587.
Crossref
 
Cave, A., Grieve, D., Johar, S., Zhang, M., & Shah, A. M. (2005). NADPH oxidase-derived reactive oxygen species in cardiac pathophysiology. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1464), 2327-2334.
Crossref
 
Choudhury, T. Z., Kamruzzaman, M., & Islam, L. N. (2019). Investigation of the cellular and soluble markers of inflammation for the assessment of cardiovascular risk in patients with acute coronary syndrome in Bangladesh. International Journal of Electronic Healthcare, 11(1), 67-80.
Crossref
 
Davies, M. J., & Hawkins, C. L. (2020). The role of myeloperoxidase in biomolecule modification, chronic inflammation, and disease. Antioxidants & Redox Signaling, 32(13), 957-981.
Crossref
 
Ferdausi, N., Anik, M. E. K., Binti, N. N., & Islam, L. N. (2020). Oxidase enzyme activities and their correlations with antioxidative stress biomarkers in patients with acute coronary syndrome in Bangladesh. World Journal of Cardiovascular Diseases, 10(04), 163-177.
Crossref
 
Ferrante, G., Nakano, M., Prati, F., Niccoli, G., Mallus, M. T., Ramazzotti, V., Montone, R. A., Kolodgie, F. D., Virmani, R., & Crea, F. (2010). High levels of systemic myeloperoxidase are associated with coronary plaque erosion in patients with acute coronary syndromes. Circulation, 122(24), 2505-2513.
Crossref
 
Góth, L. (1991). A simple method for determination of serum catalase activity and revision of reference range. Clinica Chimica Acta, 196(2-3), 143-151.
Crossref
 
Hansson, G. K., Robertson, A.-K. L., & Söderberg-Nauclér, C. (2006). Inflammation and atherosclerosis. Annual Review of Pathology, 1, 297-329.
Crossref
 
Horiuchi, M., Tsutsui, M., Tasaki, H., Morishita, T., Suda, O., Nakata, S., Nihei, S., Miyamoto, M., Kouzuma, R., Okazaki, M., Yanagihara, N., Adachi, T., & Nakashima, Y. (2004). Upregulation of vascular extracellular superoxide dismutase in patients with acute coronary syndromes. Arteriosclerosis, Thrombosis, and Vascular Biology, 24(1), 106-111.
Crossref
 
Kamanna, V. S., Ganji, S. H., & Kashyap, M. L. (2013). Myeloperoxidase and atherosclerosis. Current Cardiovascular Risk Reports, 7(2), 102-107.
Crossref
 
Kamruzzaman, M., Choudhury, T. Z., Rahman, T., & Islam, L. N. (2019). A cross-sectional study on assessment of oxidative stress in coronary heart disease patients in Bangladesh. World Journal of Cardiovascular Diseases, 9(5), 331-342.
Crossref
 
Kleniewska, P., Piechota, A., Skibska, B., & Gorąca, A. (2012). The NADPH oxidase family and its inhibitors. Archivum Immunologiae Et Therapiae Experimentalis, 60(4), 277-294.
Crossref
 
Kratnov, A., & Timganova, E. (2015). Influence of antirisk factors of cardiovascular diseases on intracellular metabolism of neutrophils in men with obesity. World Journal of Cardiovascular Surgery, 5, 25-29.
Crossref
 
Kurup, R. (2017). Neutrophils in acute coronary syndrome. European Medical Journal, 5, 79-87.
Crossref
 
Lefer, D. J., & Granger, D. N. (2000). Oxidative stress and cardiac disease. The American Journal of Medicine, 109(4), 315-323.
Crossref
 
Lubrano, V., & Balzan, S. (2015). Enzymatic antioxidant system in vascular inflammation and coronary artery disease. World Journal of Experimental Medicine, 5(4), 218-224.
Crossref
 
Maksimenko, A. V., & Vavaev, A. V. (2012). Antioxidant enzymes as potential targets in cardioprotection and treatment of cardiovascular diseases. Enzyme antioxidants: the next stage of pharmacological counterwork to the oxidative stress. Heart International, 7(1), e3.
Crossref
 
Marklund, S., & Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47(3), 469-474.
Crossref
 
Mittal, M., Siddiqui, M. R., Tran, K., Reddy, S. P., & Malik, A. B. (2014). Reactive oxygen species in inflammation and tissue injury. Antioxidants & Redox Signaling, 20(7), 1126-1167.
Crossref
 
Munnur, R. K., Cameron, J. D., Ko, B. S., Meredith, I. T., & Wong, D. T. L. (2014). Cardiac CT: Atherosclerosis to acute coronary syndrome. Cardiovascular Diagnosis and Therapy, 4(6), 430-448.
 
Ninić, A., Bogavac-Stanojević, N., Sopić, M., Munjas, J., Kotur-Stevuljević, J., Miljković, M., Gojković, T., Kalimanovska-Oštrić, D., & Spasojević-Kalimanovska, V. (2019). Superoxide dismutase isoenzymes gene expression in peripheral blood mononuclear cells in patients with coronary artery disease. Journal of Medical Biochemistry, 38(3), 284-291.
Crossref
 
Parizadeh, S. M., Ferns, G. A., Ghandehari, M., Hassanian, S. M., Ghayour-Mobarhan, M., Parizadeh, S. M. R., & Avan, A. (2018). The diagnostic and prognostic value of circulating microRNAs in coronary artery disease: A novel approach to disease diagnosis of stable CAD and acute coronary syndrome. Journal of Cellular Physiology, 233(9), 6418-6424.
Crossref
 
Pham-Huy, L. A., He, H., & Pham-Huy, C. (2008). Free radicals, antioxidants in disease and health. International Journal of Biomedical Science, 4(2), 89-96.
 
Radeen, K. R., Hafiz, F. B., Haque, R., Choudhury, T. Z., Kamruzzaman, M., & Islam, L. N. (2021). Evaluation of cellular and circulatory antioxidant- and glutathione-associated enzymes in patients with acute coronary syndrome. African Journal of Biological Sciences, 3(2), 27-35.
Crossref
 
Reusch, V. M., & Burger, M. M. (1974). Distribution of marker enzymes between mesosomal and protoplast membranes. The Journal of Biological Chemistry, 249(16), 5337-5345.
Crossref
 
Ritchie, H., & Roser, M. (2018). Causes of death. Our World in Data.
Link
 
Sanchis-Gomar, F., Perez-Quilis, C., Leischik, R., & Lucia, A. (2016). Epidemiology of coronary heart disease and acute coronary syndrome. Annals of Translational Medicine, 4(13), 256.
Crossref
 
Schmid-Schönbein, G. W. (2006). Analysis of inflammation. Annual Review of Biomedical Engineering, 8(1), 93-151.
Crossref
 
Serdar, Z., Aslan, K., Dirican, M., Sarandöl, E., Yeşilbursa, D., & Serdar, A. (2006). Lipid and protein oxidation and antioxidant status in patients with angiographically proven coronary artery disease. Clinical Biochemistry, 39(8), 794-803.
Crossref
 
Violi, F., & Pignatelli, P. (2015). Clinical application of NOX activity and other oxidative biomarkers in cardiovascular disease: A critical review. Antioxidants & Redox Signaling, 23(5), 514-532.
Crossref
 
Voetman, A. A., & Roos, D. (1980). Endogenous catalase protects human blood phagocytes against oxidative damage by extracellularly generated hydrogen peroxide. Blood, 56(1), 846-452.
Crossref
 
Wang, Y., Branicky, R., Noë, A., & Hekimi, S. (2018). Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. The Journal of Cell Biology, 217(6), 1915-1928.
Crossref
 
Winterbourn, C. C., Kettle, A. J., & Hampton, M. B. (2016). Reactive oxygen species and neutrophil function. Annual Review of Biochemistry, 85, 765-792.
Crossref
 
Zhang, R., Brennan, M. L., Fu, X., Aviles, R. J., Pearce, G. L., Penn, M. S., Topol, E. J., Sprecher, D. L., & Hazen, S. L. (2001). Association between myeloperoxidase levels and risk of coronary artery disease. Journal of American Medical Association, 286(17), 2136-2142.
Crossref