JOURNAL OF ANIMAL SCIENCE AND VETERINARY MEDICINE
Integrity Research Journals

ISSN: 2536-7099
Model: Open Access/Peer Reviewed
DOI: 10.31248/JASVM
Start Year: 2016
Email: jasvm@integrityresjournals.org


Yield and quality of fodder maize intercropped with lablab and cowpea for ruminant feeding in the humid zone of Nigeria

https://doi.org/10.31248/JASVM2024.444   |   Article Number: A14C1A215   |   Vol.9 (3) - June 2024

Received Date: 24 May 2024   |   Accepted Date: 20 June 2024  |   Published Date: 30 June 2024

Authors:  Adegun, M. K.* and Akindada, A. O.

Keywords: maize, intercrop, legumes, fodder

Inadequate feed resources, resulting from pressure on natural grazing systems due to land shortages and insecurity, have threatened food security in Sub-Saharan Africa. To ameliorate this challenge, the study was undertaken to determine the effect of manure on yield and quality of fodder maize intercropped with lablab and cowpea. Land was divided into 40 sub plots in a 5 by 2 factorial arrangement with 4 replicates. Seeds of fodder maize, cowpea and lablab sown either sole maize, lablab, cowpea with no manure (NOMA) or with manure (MANU) and maize intercropped with cowpea (MC) or lablab (ML) with NOMA or with MANU. Results showed that maize and lablab intercrops had significantly (p<0.05) higher dry matter yield (DMY) (16.80 tha-1) than maize-cowpea intercrops (13.23 tha-1) (p<0.05). The highest (p<0.05) value of 1.67 in land equivalent ratio (LER) was recorded for MLMANU (P<0.05). Cowpea with manure had the highest (p<0.05) CP of 20.20 g 100 g-1 (p<0.05). Crude fibre (CF) was increased (p<0.05) in MNOMA (p<0.05). Minerals were increased (p<0.05) in the legumes and intercrops (P<0.05). There was an increase in DMY in plots with MANU compared to NOMA. Maize-lablab outperformed maize-cowpea in quantity and intercropping maize with lablab and cowpea improved fodder quality and quantity.

Adegun, M. K. (2014). Voluntary feed intake and nutrient utilization of West African Dwarf sheep fed supplements of Moringa oleifera and Gliricidia sepium fodders. American Journal of Agriculture and Forestry, 2(3), 94-99.
https://doi.org/10.11648/j.ajaf.20140203.16
 
Adeyanju, A. O., Ishiyaku, M. F., & Omoigui, L. O. (2007). Inheritance of time to first flower in photo-insensitive cowpea (Vigna unguiculata (L) Walp.). Asian Journal of Plant Sciences, 6(2), 435- 437.
https://doi.org/10.3923/ajps.2007.435.437
 
Ali, S., & Mohammad, H. S. (2012). Forage yield and quality in intercropping of forage corn with different cultivars of berseem clover in different levels of nitrogen fertilizer. Journal of Food, Agriculture and Environment, 10(1), 602-604.
 
AOAC (2005). Official methods of Analysis of international 18th Ed. AOAC International Gaithersburg MD, USA, Official Method.
 
Asiriuwa, O. D., Ikhuoria, J. U., & Ilor, E. G. (2013). Myco-remediation potential of heavy metals from contaminated soil. Bulletin of Environment, Pharmacology and Life Sciences, 2(5), 16-22.
 
Ayoola, O. T., & Makinde, E. A. (2007). Complementary organic and inorganic fertilizer application: influence of growth and yield of cassava/maize/melon intercrop with a relayed cowpea. Australian Journal of Basic and Applied Sciences, 1(3), 187-192.
 
Ayssiwede, S. B., Zanmenou, J. C., Issa, Y., Hane, M. B., Dieng, A., Chrysostome, C. A. A. M., Houinato, M. R., Hornick, J. L., & Missohou, A. (2011). Nutrient composition of some unconventional and local feed resources available in Senegal and recoverable in indigenous chickens or animal feeding. Pakistan Journal of Nutrition, 10(8), 707-717.
https://doi.org/10.3923/pjn.2011.707.717
 
Bannink, A., Šebek, L., & Dijkstra, J. (2010). Efficiency of phosphorus and calcium utilization in dairy cattle and implications for the environment. In Phosphorus and calcium utilization and requirements in farm animals (pp. 151-172). Wallingford UK: CABI.
https://doi.org/10.1079/9781845936266.0151
 
Chaudhary, D. P., Kumar, A., Mandhania, S. S., Srivastava, P., & Kumar, R. S. (2012). Maize as Fodder, an Alternative Approach, Directorate of Maize Research, Pusa Campus, New Delhi (pp. 110- 112), Technical Bulletin, 04:32.
 
Cook, B. G., Pengelly, B. C., Brown, S. D., Donnelly, J. L., Eagles, D. A., Franco, M. A., Hanson, J., Mullen, B.F., Partridge, I. J., Peters, M., & Schultze-Kraft, R. (2005). Tropical forages. CSIRO, DPIF, CIAT and ILRI, Brisbane, Australia. Pp. 1-2.
 
Cusicanqui, J. A., & Lauer, J. G. (1999). Plant density and hybrid influence on corn forage yield and quality. Agronomy Journal, 91(6), 911-915.
https://doi.org/10.2134/agronj1999.916911x
 
Dahmardeh, M., Ghanbari, A., Syasar, B., & Ramroudi, M. (2009). Effect of intercropping maize (Zea maps L.) with cow pea (J'igna unguiculata L.) on green forage yield and quality evaluation. Asian Journal of Plant Sciences, 8(3), 235-239.
https://doi.org/10.3923/ajps.2009.235.239
 
Denekew, Y., & Asefa, H. (2012). On-farm verification of under sowing of cowpea (Vigna unguiculata) and vetch (Vicia villosa) on maize crop for forage dry matter yield production in Northwest Ethiopia. Agricultural Research and Reviews, 1(1), 53-57.
 
Eskandari, H. (2012). Yield and quality of forage produced in intercropping of maize (Zea mays) with cowpea (Vigna sinensis) and mungbean (Vigna radiate) as double cropped. Journal of Basic and Applied Scientific Research, 2(1), 93-97.
 
Ewansiha, S. U., Ogedegbe, S. A., and Chiezey, U. F. (2012). Lablab effect on soil properties and subsequent maize-cowpea intercrop. Agro-Science, 11(2), 54-61.
https://doi.org/10.4314/as.v11i2.8
 
Federal Department of Agriculture and Land Resources (FDLAR) (2004). Soil Report. The Reconnaissance Soil Survey Nigeria. Pp. 1-4.
 
Ghanbari-Bonjar, A. (2000). Intercropping field bean (Viciafaba) and wheat (Triticum aestivum L.) as a Low-input Forage. PhD Thesis. Wye College, University of London, UK.
 
Guleria, G., & Kumar, R. K. (2016). Sowing methods and varying seed rates of cowpea on production potential of sorghum, Sudan grass hybrid and cowpea, Agricultural Reviews, 32(4), 290-299.
https://doi.org/10.18805/ag.v37i4.6459
 
Gwanzura, T., Ng'ambi, J. W., & Norris, D. (2012). Nutrient composition and tannin contents of forage sorghum, cowpea, lablab and mucuna hays grown in Limpopo province of South Africa. Asian Journal of Animal Science, 6(5), 256-262
https://doi.org/10.3923/ajas.2012.256.262
 
IITA (1979). Selected methods for soil and plant analysis. Manual Series No. 1. International Institute of Tropical Agriculture.
 
Ijoyah, M. O. (2012). Review of intercropping research: Studies on cereal-vegetable based cropping system. Scientific Journal of Crop Science, 1(3), 55-62.
 
ILRI (2013). Lablab (Lablab purpureus cultivar Rongai) for livestock feed on small-scale farms (English Version). Nairobi, Kenya: ILRI
 
Iqbal, A., Ayub, M., Zaman, H., & Ahmad, R. (2006). Impact of nutrient management and legume association on agro-qualitative traits of maize forage. Pakistan Journal of Botany, 38(4), 1079-1084.
 
Lamidi, A. A., & Ologbose, F. I. (2014). Dry season feeds and feeding: A threat to sustainable ruminant production in Nigeria. Journal of Agric and Social Research, 14(1), 17-30.
 
Lemlem, A. (2013). The effect of intercropping maize with cowpea and lablab on crop yield. Herald Journal of Agriculture and Food Science Research, 2(5), 156-170.
 
Li, L., Yang, S., Li, X., Zhang, F., & Christie, P. (1999). Interspecific Complementary and Competitive Interactions between Intercropped Maize and Faba Bean. Plant and Soil, 212(2), 105-114.
https://doi.org/10.1023/A:1004656205144
 
Lithourgidis, A. S., Vasilakoglou, I. B., Dhima, K. V., Dordas, C. A., & Yiakoulaki, M. D. (2006). Forage yield and quality of common vetch mixtures with oat and triticale in two seeding ratios. Field Crops Research, 99(2-3), 106-113.
https://doi.org/10.1016/j.fcr.2006.03.008
 
Maitra, S., Shankar, T., & Barnejee, P. (2020). Potential and Advantages of maize-legume intercropping system. Intechopen. Pp. 1-14.
https://doi.org/10.5772/intechopen.91722
 
Masoero, F., Rossi, F., & Pulimeno, A. M. (2006). Chemical composition and in vitro digestibility of stalks, leaves and cobs of four corn hybrids at different phenological stages. Italian Journal of Animal Science, 5(3), 215-227.
https://doi.org/10.4081/ijas.2006.215
 
McDonald, J. F. D., Greenhalgh, C. A., Morgan, R., Edwards, L., & Robert, W. (2011). Animal Nutrition 7th Edition. Pp. 446- 458.
 
Mucheru-Muna, M., Pypers, P., Mugendi, D., Kung'u, J., Mugwe, J., Merckx, R., & Vanlauwe, B. (2010). A staggered maize-legume intercrop arrangement robustly increases crop yields and economic returns in the highlands of Central Kenya. Field Crops Research, 115(2), 132-139.
https://doi.org/10.1016/j.fcr.2009.10.013
 
Mupangwa, J. F. (2000). Nutritive value, intake and utilization of forage legumes in ruminants. Ph.D. Thesis University of Zimbabuwe. Pp. 446-458.
 
Nadeau, E., Rustas, B. O., Arnesson, A., & Swensson, C. (2010). Maize silage quality on Swedish dairy and beef farms. In: Proceedings of the International Conference on Forage Conservation, Brno, Czech Republic. Pp. 195-197.
 
National Research Council (NRC) (2007). Nutrient requirements of small ruminants: Sheep, goats, cervids and new world camelids. The National Academies Press, Washington DC.
 
Ndengu, G., Mponela, P., Chataika, B., Desta, L. T., Chirwa, R., & Sileshi, G. G. (2022). Effect of combining organic manure and inorganic fertilisers on maize-bush bean intercropping. Experimental Agriculture, 58, e29.
https://doi.org/10.1017/S0014479722000102
 
Njarui, D. M. G., & Wandera, F. P. (2004). Effect of cutting frequency on productivity of five selected herbaceous legumes and five grasses in semi-arid tropical Kenya. Tropical Grasslands, 38(3), 158-166.
 
Nyambati, E. M., Sollenberger, L. E., Eilitta, M., & Mureithi, J. G. (2009). Residual effects of relay-cropped mucuna and lablab on maize and bean yields in northwest Kenya. African Journal of Agricultural Research, 4(11), 1189-1198.
 
Ofuoku, A. U., & Isife, B. I. (2009). Causes, effects and resolution of farmers-nomadic cattle herders conflict in Delta state, Nigeria. International Journal of Sociology and Anthropology, 1(2), 47-54.
 
Onwuka, G. I. (2005). Food analysis and instrumentation: Theory and Practice. Napthali Prints.
 
Phillip, D., Nkonya, E., Pander, J., & Oni, O. A. (2009). Constraints to Increasing Agricultural Productivity in Nigeria. A Review. International Food Policy Research Institute (IFPRI). Publication of Nigeria Strategy Support Programme (NSSP) Background Paper No 6.
 
Ross, S. M., King, J. R., O'Donovan, J. T., & Spaner, D. (2005). The productivity of oats and berseem clover intercrops. I. Primary growth characteristics and forage quality at four densities of oats. Grass and Forage Science, 60(1), 74-86.
https://doi.org/10.1111/j.1365-2494.2005.00455.x
 
Shi, M., Ma, Z., Tian, Y., Zhang, X., & Shan, H. (2021). Effects of maize straw treated with various levels of CaO and moisture on composition, structure, and digestion by in vitro gas production. Animal Bioscience, 34(12), 1940-1950.
https://doi.org/10.5713/ab.21.0184
 
Shi, Y., Ma, Y., Ma, W., Liang, C., Zhao, X., Fang, J., & He, J. (2013). Large scale patterns of forage yield and quality across Chinese grasslands. Chinese Science Bulletin, 58, 1187-1199.
https://doi.org/10.1007/s11434-012-5493-4
 
Sileshi, G. W., Akinnifesi, F. K., Ajayi, O. C., & Muys, B. (2011). Integration of legume trees in maize-based cropping systems improves rain use efficiency and yield stability under rain-fed agriculture. Agricultural Water Management, 98(9), 1364-1372.
https://doi.org/10.1016/j.agwat.2011.04.002
 
Song, Y., Lee, S. H., Woo, J. H., & Lee, K. W. (2023). Forage yield, nutritional value, soil chemical composition, and soil microbial abundance under maize-legume intercropping systems in a paddy field. Journal of Crop Science and Biotechnology, 26(3), 285-300.
https://doi.org/10.1007/s12892-022-00180-2
 
Statistical Analysis System (SAS) (2005). Users guide (7th Edition). North Carolina, U.S.A. p. 10.
 
Yayneshet, T. (2010). Feed resources availability in Tigray Region, Northern Ethiopia, for production of export quality meat and livestock. Ethiopia Sanitary & Phytosanitary Standards and Livestock & Meat Marketing Program. Mekelle University, Ethiopia. Pp. 1-75.
 
Zhang, J., Yin, B., Xie, Y., Li, J., Yang, Z., & Zhang, G. (2015). Legume-cereal intercropping improves forage yield, quality and degradability. PLoS One, 10(12), e0144813.
https://doi.org/10.1371/journal.pone.0144813