ISSN: 2536-7099
Model: Open Access/Peer Reviewed
DOI: 10.31248/JASVM
Start Year: 2016
Email: jasvm@integrityresjournals.org
https://doi.org/10.31248/JASVM2024.510 | Article Number: 585D43003 | Vol.10 (1) - February 2025
Received Date: 14 November 2024 | Accepted Date: 19 December 2024 | Published Date: 28 February 2025
Authors: Ojo T.S.* , Adekunle E.O. , Oke O.E. , Wheto M. , Ndubuisi-Ogbonna L.C. and Daramola J.O.
Sperm cryopreservation is a useful technique in reproduction with variations in sperm quality among different breeds. This study assessed the spermatozoa cryotolerance among different breeds of chickens using slow and rapid freezing procedures. Ten (10) breeder birds from each breed were selected for this experiment at 30 weeks of age with an average body weight of 3.0 kg. Semen samples collected from FUNAAB Alpha (Normal feather) (NF), Arbor Acre (AB) and Dominant Black (DB) were subjected to cryopreservation in a completely randomised design and analysed for sperm viability, sperm functional integrity and oxidative stress parameters respectively. The quality of sperm cells from Normal feather, Arbor Acre, and Dominant Black chicken breeds in reaction to slow and rapid freezing was assessed. Under slow freezing, the result showed that Arbor Acre has the highest sperm progressive motility of 63.04% and livability of 77.67% with low abnormalities. Dominant Black chickens showed moderate sperm progressive motility of 48.00% and an abnormality rate of 1.07%. Rapid freezing lowered sperm quality in all breeds, although Abor Acre showed a major reduction in sperm progressive motility. Oxidative stress parameters indicated that Normal feather chickens experienced a significant increase in lipid peroxidation under rapid freezing. The leukocyte values were similar across the breeds. Therefore, the findings of this research proved that slow freezing better preserves chicken semen compared to rapid freezing. Among the breeds examined, Dominant black chicken spermatozoa was better preserved.
Agarwal, A., Mulgund, A., Sharma, R., & Sabanegh, E. (2014). Mechanisms of oligozoospermia: an oxidative stress perspective. Systems biology in Reproductive Medicine, 60(4), 206-216. https://doi.org/10.3109/19396368.2014.918675 |
||||
Agossou, D. J., & Koluman, N. (2018). An objective analysis of factors affecting buck semen quality attributes during cryopreservation: A mini review. Annual Research & Review in Biology, 27(3), 1-7. https://doi.org/10.9734/ARRB/2018/42087 |
||||
Ahmad, M., Nasrullah, R., Riaz, H., Sattar, A. & Ahmad, N., 2014. Changes in motility, morphology, plasma membrane and acrosome integrity during stages of cryopreservation of buck sperm. Journal of the South African Veterinary Association, 85(1), 1-4. https://doi.org/10.4102/jsava.v85i1.972 |
||||
Batista, M., Santana, M., Alamo, D., González, F., Niño, T., Cabrera, F., & Gracia, A. (2012). Effects of incubation temperature and semen pooling on the viability of fresh, chilled and freeze‐thawed canine semen samples. Reproduction in Domestic Animals, 47(6), 1049-1055. https://doi.org/10.1111/j.1439-0531.2012.02014.x |
||||
Cecere, J. T. (2014). Eosin‐Nigrosin staining in the evaluation of sperm. In: Dascanio, J. J., & McCue PM. Equine reproductive procedures (pp. 373-376). Wiley Online Library. https://doi.org/10.1002/9781118904398.ch114 |
||||
Chankitisakul, V., Boonkum, W., Kaewkanha, T., Pimprasert, M., Ratchamak, R., Authaida, S., & Thananurak, P. (2022). Fertilizing ability and survivability of rooster sperm diluted with a novel semen extender supplemented with serine for practical use on smallholder farms. Poultry Science, 101(12), 102188. https://doi.org/10.1016/j.psj.2022.102188 |
||||
Comizzoli, P., & Holt, W. V. (2022). Recent progress in spermatology contributing to the knowledge and conservation of rare and endangered species. Annual Review of Animal Biosciences, 10(1), 469-490. https://doi.org/10.1146/annurev-animal-020420-040600 |
||||
Daramola, J. O. & Adekunle, E. O., 2017. Effects of Washing Protocols on Cryosurvival of Spermatozoa from West African Dwarf Goat Bucks. Cryo Letters, 38(3), 210-215. | ||||
Duncan, D. B. (1955). Multiple range and multiple F tests. Biometrics, 11(1), 1-42. https://doi.org/10.2307/3001478 |
||||
Fahy, G. M., & Wowk, B. (2015). Principles of cryopreservation by vitrification. Cryopreservation and freeze-drying protocols (pp. 21-82). Springer Nature. https://doi.org/10.1007/978-1-4939-2193-5_2 |
||||
Feyzi, S., Sharafi, M., & Rahimi, S. (2018). Stress preconditioning of rooster semen before cryopreservation improves fertility potential of thawed sperm. Poultry science, 97(7), 2582-2590. https://doi.org/10.3382/ps/pey067 |
||||
Grötter, L. G., Cattaneo, L., Marini, P. E., Kjelland, M. E., & Ferré, L. B. (2019). Recent advances in bovine sperm cryopreservation techniques with a focus on sperm post‐thaw quality optimization. Reproduction in Domestic Animals, 54(4), 655-665. https://doi.org/10.1111/rda.13409 |
||||
Guo, S., & Zhang, A. (2024). Review of different temperatures for biopreservation. International Journal of Refrigeration, 157, 53-59. https://doi.org/10.1016/j.ijrefrig.2023.10.014 |
||||
Hufana-Duran, D., Mallari, R. P., Suba, D. P., Duran, P. G., Abella, E. A., & Mamuad, F. V. (2015). Hypo-osmotic swelling test for membrane integrity evaluation of frozen-thawed water buffalo (Bubalus bubalis Linn.) spermatozoa. Philippine Journal of Science, 144(2), 209-219. | ||||
Kanatiyanont, N., Kornkaewrat, K., Suthanmapinunt, P., & Pinyopummin, A. (2012). Effect of semen collection techniques on semen quality and sperm motility parameters in Siamese fighting cock (Gallus gallus). The Thai Journal of Veterinary Medicine, 42(4), 439-445. https://doi.org/10.56808/2985-1130.2422 |
||||
Kowalczyk, A., Gałęska, E., & Bubel, A. (2022). The concentration of ProAKAP4 and other indicators of cryopotential of spermatozoa cryopreserved in extender with Holothuroidea extract addition. Animals, 12(4), 521. https://doi.org/10.3390/ani12040521 |
||||
Kumar, A., Prasad, J. K., Srivastava, N., & Ghosh, S. K. (2019). Strategies to minimize various stress-related freeze-thaw damages during conventional cryopreservation of mammalian spermatozoa. Biopreservation and biobanking, 17(6), 603-612. https://doi.org/10.1089/bio.2019.0037 |
||||
Mphaphathi, M. L., Seshoka, M. M., Luseba, D., Sutherland, B., & Nedambale, T. L. (2016). The characterisation and cryopreservation of Venda chicken semen. Asian Pacific Journal of Reproduction, 5(2), pp.132-139. https://doi.org/10.1016/j.apjr.2016.01.009 |
||||
Mphaphathi, M. L., Thema, M. A., Ledwaba, M. R., Sebopela, D., & Magopa, L. (2023). Conservation of Gametes and Use during Assisted Reproductive Technologies in Equine. In Equine Science-Applications and Implications of New Technologies. IntechOpen. | ||||
Murray, K. A., & Gibson, M. I. (2022). Chemical approaches to cryopreservation. Nature Reviews Chemistry, 6(8), 579-593. https://doi.org/10.1038/s41570-022-00407-4 |
||||
Ndubuisi-Ogbonna, L. C., Daramola, J. O., Akintunde, A. O., Abdullah, A. R., Wheto, M., Ojo, S. T., & Adighibe, B. K. (2021). Comparative Effect of Centrifugation on Sperm Viability of FUNAAB Alpha Chickens During Slow and Rapid Freezing Protocols. Wayamba Journal of Animal Science, 13, 1874-1879. https://doi.org/10.4038/wjas.v13i0.25 |
||||
Partyka, A., & Niżański, W. (2022). Advances in storage of poultry semen. Animal Reproduction Science, 246, 106921. https://doi.org/10.1016/j.anireprosci.2021.106921 |
||||
Peris-Frau, P., Soler, A. J., Iniesta-Cuerda, M., Martín-Maestro, A., Sánchez-Ajofrín, I., Medina-Chávez, D. A., & Garde, J. J. (2020). Sperm cryodamage in ruminants: understanding the molecular changes induced by the cryopreservation process to optimize sperm quality. International Journal of Molecular Sciences, 21(8), 2781. https://doi.org/10.3390/ijms21082781 |
||||
Pipan, M. Z., Mrkun, J., Strajn, B. J., Vrtač, K. P., Kos, J., Pišlar, A., & Zrimšek, P. (2017). The influence of macro-and microelements in seminal plasma on diluted boar sperm quality. Acta Veterinaria Scandinavica, 59(1), 1-9. https://doi.org/10.1186/s13028-017-0279-y |
||||
Roychoudhury, S., Sharma, R., Sikka, S., & Agarwal, A. (2016). Diagnostic application of total antioxidant capacity in seminal plasma to assess oxidative stress in male factor infertility. Journal of Assisted Reproduction and Genetics, 33, 627-635. https://doi.org/10.1007/s10815-016-0677-5 |
||||
Santos, M. V., Silva, A. M., Aquino, L. V., Oliveira, L. R., Moreira, S. S., Oliveira, M. F., Silva, A. R., & Pereira, A. F. (2023). Different methods for seminal plasma removal and sperm selection on the quality and fertility of collared peccary sperm. Animals, 13(12), 1955. https://doi.org/10.3390/ani13121955 |
||||
SAS (2000).. SAS User's Guide: Statistics Inc., Cary, N.C. 923 p. | ||||
Sengupta, P., Dutta, S., & Irez, T. (2024). Oxidants and antioxidants in male reproduction: roles of oxidative and reductive stress. Journal of Integrated Science and Technology, 12(3), 753-753. https://doi.org/10.62110/sciencein.jist.2024.v12.753 |
||||
Stuart, C. C., Vaughan, J. L., Kershaw, C. M., De Graaf, S. P., & Bathgate, R. (2019). Effect of diluent type, cryoprotectant concentration, storage method and freeze/thaw rates on the post-thaw quality and fertility of cryopreserved alpaca spermatozoa. Scientific Reports, 9(1), 12826. https://doi.org/10.1038/s41598-019-49203-z |
||||
Tarig, A. A., Wahid, H., Rosnina, Y., Yimer, N., Goh, Y. M., Baiee, F. H., & Ebrahimi, M. (2017). Effect of different concentrations of soybean lecithin and virgin coconut oil in Tris-based extender on the quality of chilled and frozen-thawed bull semen. Veterinary World, 10(6), 672. https://doi.org/10.14202/vetworld.2017.672-678 |
||||
Vujisić, S., Lepej, S. Ž., Jerković, L., Emedi, I., & Sokolić, B. (2005). Antisperm antibodies in semen, sera and follicular fluids of infertile patients: relation to reproductive outcome after in vitro fertilization. American Journal of Reproductive Immunology, 54(1), 13-20. https://doi.org/10.1111/j.1600-0897.2005.00274.x |
||||
World Health Organisation (WHO). (1999). WHO laboratory manual for the examination of human semen and sperm-cervical mucus interaction. Cambridge University Press. |