JOURNAL OF ANIMAL SCIENCE AND VETERINARY MEDICINE
Integrity Research Journals

ISSN: 2536-7099
Model: Open Access/Peer Reviewed
DOI: 10.31248/JASVM
Start Year: 2016
Email: jasvm@integrityresjournals.org


Study of Physico-chemical factors affecting the growth of cell-culture adapted bovine Rotavirus strain of Pakistan

https://doi.org/10.31248/JASVM2019.129   |   Article Number: 46893D142   |   Vol.4 (2) - April 2019

Received Date: 15 January 2019   |   Accepted Date: 04 March 2019  |   Published Date: 30 April 2019

Authors:  Wardah Sharmeen Syed*# , Nadia Mukhtar , Nauman Zahid and Tahir Yaqoub#

Keywords: Bovine Rotavirus, cell culture, chemical factors, culturing of BRV, physical factors.

Rotavirus (RV) diarrhea is the major cause of death of millions of children in developing countries besides causing economically significant malady in neonates of many domestic animals. There is a very little information available for the factors which can affect prevalence of Bovine Rotavirus (BRV) in Pakistan. There is a dire need to propagate BRV on cell culture and evaluate the physical and chemical control of RV in effective ways for the betterment of human and livestock welfare. Therefore, the present study aimed to propagate BRV on Madin-Darby bovine kidney (MDBK) cell line. The screening of the virus was done by using commercially available kit and TCID50 technique. The propagation of BRV was then led to study its inactivity and infectivity potential using different physical and chemical factors. For this reason, 3 physical factors (Temperature, pH and UV light) and 8 chemical disinfectants were used. The virus got completely inactive at a temperature range of 75 to 80ºC and 5.00 to 6.00 pH while remained active at 7.04 and 8.00. The virus was inactivated after exposure to 0.5% Virkon®-S within 30 minutes, 0.5% Bromo-Sept after 30 min, and 1.0% surf excel after 30 min Phenol within 60 min at a concentration of 1.0% and 0.6% H2O2 after 30 min proved to be virucidal for the virus. These findings can be helpful for the farmers to keep their farms decontaminated from this virus. Moreover, these results can also be of help in the prevention of the outbreaks that occur in the hospitals.

#These authors contributed equally to this work.

Aiyegbo, M. S., Eli, I. M., Spiller, B. W., Williams, D. R., Kim, R., Lee, D. E., Liu, T., Li, S., Stewart, P. L., & Crowe, Jr. J. E. (2014). Differential accessibility of a Rotavirus VP6 epitope in trimers comprising type I, II, or III channels as revealed by binding of a human Rotavirus VP6-specific antibody. Journal of Virology, 88(1), 469-76.
Crossref
 
Al-Robaiee, I. A., & Al-Farwachi, M. I. (2013). Prevalence of rotaviral infection in diarrheic neonatal calves in Mosul city, Iraq. Veterinary World, 6(8), 538-540.
Crossref
 
Anonymous (2009). Rinder pest. In: Technical Disease Card database, (Paris, France: OIE Office International des Epizooties/World Organization for Animal Health).
 
Arias, C. F., Isa, P., Guerrero, C. A., Méndez, E., Zárate, S., López, T., Espinosa, R., Romero, P., & López, S. (2002). Molecular biology of rotavirus cell entry. Archives of Medical Research, 33(4), 356-361.
Crossref
 
Arnold, M., Patton, J. T., & McDonald, S. M. (2009). Culturing, storage, and quantification of Rotaviruses. Current Protocols in Microbiology, Chapter 15: Unit 15C 3.
Crossref
 
Badaracco, A., Garaicoechea, L., Matthijnssens, J., Uriarte, E. L., Odeón, A., Bilbao, G., Fernandez, F., Parra, G. I., & Parre-o, V. (2013). Phylogenetic analyses of typical bovine rotavirus genotypes G6, G10, P [5] and P [11] circulating in Argentinean beef and dairy herds. Infection, Genetics and Evolution, 18, 18-30.
Crossref
 
Bugarc̀ić, A., & Taylor, J. A. (2006). Rotavirus nonstructural glycoprotein NSP4 is secreted from the apical surfaces of polarized epithelial cells. Journal of Virology, 80(24), 12343-12349.
Crossref
 
Bunpapong, N., Talummuk, S., Chaiyanate, P., Sievert, K., Thanawongnuwech, R. (2011). VirusnipTM and Virkon®S efficacy test on CSFV and PRV. Proc. Asian Pig Vet. Soc. Congress. 5: 140.
 
Chen, S. C., Tan, L. B., Huang, L. M., & Chen, K. T. (2012). Rotavirus infection and the current status of Rotavirus vaccines. Journal of the Formosan Medical Association, 111(4), 183-193.
Crossref
 
Cho, Y-il. (2012). Ecology of calf diarrhea in cow-calf operations. Graduate Theses and Dissertations. 12642. Iowa State University Capstones, Theses and Dissertations.
Link
 
De Benedictis, P., Beato, M. S., & Capua, I. (2007). Inactivation of avian influenza viruses by chemical agents and physical conditions: A review. Zoonoses and Public Health, 54(2), 51-68.
Crossref
 
Dhama, K., Chauhan, R. S., Mahendran, M., & Malik, S. V. S. (2009). Rotavirus diarrhea in bovines and other domestic animals. Veterinary Research Communications, 33(1), 1-23.
Crossref
 
Estes, M. K., Graham, D. Y., Smith, E. M., & Gerba, C. P. (1979). Rotavirus stability and inactivation. Journal of General Virology, 43(2), 403-409.
Crossref
 
Estes, M. K., Kang, G., Zeng, CQ-Y., Crawford, S. E. & Ciarlet, M. (2001). Pathogenesis of Rotavirus gastroenteritis, Novartis Foundation Symposium. Chichester; New York; John Wiley; 1999. Pp. 82-100.
Crossref
 
Gregersen, J. P. (2012). Decreasing potential iatrogenic risks associated with influenza vaccines. EP Patent 2, Pp. 155 & 236.
 
Guardabassi, L., Dalsgaard, A., & Sobsey, M. (2003). Occurence and survival of viruses in composted human faeces. Volume 32. (Denmark), Pp. 27-37.
 
Höh, H., Presser, W., & Wigand, R. (1983). Nosokomial-Infektion durch Rotaviren bei Erwachsenen. DMW-Deutsche Medizinische Wochenschrift, 108(42), 1586-1591.
Crossref
 
Holland, R. E. (1990). Some infectious causes of diarrhea in young farm animals. Clinical Microbiology Reviews, 3(4), 345-375.
Crossref
 
Jiang, B., Glass, R. I., & Saluzzo, J. f. (2013). Thermal inactivation of rotavirus. US Patent, Pp. 20-384.
 
Kaushik, R. S., Begg, A. A., Wilson, H. L., Aich, P., Abrahamsen, M. S., Potter, A., Babiuk, L. A., & Griebel, P. (2008). Establishment of fetal bovine intestinal epithelial cell cultures susceptible to bovine rotavirus infection. Journal of Virological Methods, 148(1-2), 182-196.
Crossref
 
Khadre, M. A., & Yousef, A. E. (2002). Susceptibility of human rotavirus to ozone, high pressure, and pulsed electric field. Journal of Food Protection, 65(9), 1441-1446.
Crossref
 
Khan, M. A., Hussain, S. N., Bahadar, S., Ali, A. and Shah, I. A. (2008). An outbreak of peste des petits ruminants (PPR) in goats in district Chitral, N.W.F.P., Pakistan. ARPN Journal of Agricultural and Biological Sciences, 3.
 
Kurtz, J. B., Lee, T. W., & Parsons, A. J. (1980). The action of alcohols on Rotavirus, astrovirus and enterovirus. The Journal of Hospital Infection, 1(4), 321-325.
Crossref
 
Lopez, S., & Arias, C. F. (2006). Early steps in Rotavirus cell entry. Current Topics in Microbiology and Immunology, 309: 39-66.
Crossref
 
Maes, R. K., Grooms, D. L., Wise, A. G., Han, C., Ciesicki, V., Hanson, L., Vickers, M. L., Kanitz, C., & Holland, R. (2003). Evaluation of a human group a rotavirus assay for on-site detection of bovine rotavirus. Journal of Clinical Microbiology, 41(1), 290-294.
Crossref
 
McNulty, M. S. (1978). Rotaviruses. Journal of General Virology, 40(1), 1-18.
Crossref
 
Mehle, N., & Ravnikar, M. (2012). Plant viruses in aqueous environment-survival, water mediated transmission and detection. Water Research, 46(16), 4902-4917.
Crossref
 
Meng, Z. D., Birch, C., Heath, R., & Gust, I. (1987). Physicochemical stability and inactivation of human and simian rotaviruses. Applied and Environmental Microbiology, 53(4), 727-730.
 
Miles, M. G., Lewis, K. D., Kang, G., Parashar, U. D., & Steele, A. D. (2012). A systematic review of Rotavirus strain diversity in India, Bangladesh, and Pakistan. Vaccine, 30 Suppl 1, A131-139.
Crossref
 
Nims, R. W., & Plavsic, M. (2012). Polyomavirus inactivation - A review. Biologicals. In Press.
 
Pesavento, J. B., Crawford, S. E., Estes, M. K. and Prasad, B. V. (2006). Rotavirus proteins: structure and assembly. Current Topics in Microbiology and Immunology, 309, 189-219.
Crossref
 
Ramig, R. F. (2004). Pathogenesis of intestinal and systemic rotavirus infection. Journal of Virology, 78(19), 10213-10220.
Crossref
 
Reading, P. C., Holmskov, U., & Anders, E. M. (1998). Antiviral activity of bovine collectins against rotaviruses. Journal of General Virology, 79(9), 2255-2263.
Crossref
 
Shahid, M. A., Abubakar, M., Hameed, S., & Hassan, S. (2009). Avian influenza virus (H 5 N 1); effects of physico-chemical factors on its survival. Virology Journal, 6(1), 38.
Crossref
 
Smelt, J. (1998). Recent advances in the microbiology of high pressure processing. Trends in Food Science and Technology, 9(4), 152-158.
Crossref
 
Sobsey, M. D., & Meschke, J. S. (2003). Virus survival in the environment with special attention to survival in sewage droplets and other environmental media of fecal or respiratory origin. Report for the World Health Organization, Geneva, Switzerland, 70.
 
Swayne, D. E., Glisson, J. R., Reed, W. M., & Pearson, J. E. (2006). A Laboratory Manul for the Isolation and Identification of Avian Pathogens, 4 Ed, International Book Distributing Company.
 
Swiatek, D. L., Palombo, E. A., Lee, A., Coventry, M. J., Britz, M. L., & Kirkwood, C. D. (2010). Detection and analysis of bovine rotavirus strains circulating in Australian calves during 2004 and 2005. Veterinary Microbiology, 140(1-2), 56-62.
Crossref
 
Tang, J. W. (2009). The effect of environmental parameters on the survival of airborne infectious agents. Journal of the Royal Society Interface, 6(suppl. 6), S737-S746.
Crossref
 
Wilhelm, S. W., Jeffrey, W. H., Suttle, C. A., & Mitchell, D. L. (2002). Estimation of biologically damaging UV Levels in marine surface waters with DNA and viral dosimeters. Photochemistry and Photobiology, 76(3), 268-273.
Crossref