GLOBAL JOURNAL OF EARTH AND ENVIRONMENTAL SCIENCE
Integrity Research Journals

ISSN: 2636-6002
Model: Open Access/Peer Reviewed
DOI: 10.31248/GJEES
Start Year: 2016
Email: gjees@integrityresjournals.org


Evaluation of potentially toxic metals load and risk assessment in sediments from coastal areas of Lagos State

https://doi.org/10.31248/GJEES2023.133   |   Article Number: 98D12EA41   |   Vol.8 (2) - April 2023

Received Date: 08 March 2023   |   Accepted Date: 05 April 2023  |   Published Date: 30 April 2023

Authors:  Majolagbe A. O.* , Anko S. O. , Yusuf K. A. and Ayodele A. A.

Keywords: Coastal area, ecological potential risks, Langbasa, trace metals, sediments, sediment quality guidelines.

Trace metal pollution is of global concern due to its adverse effects on human health. Sediments in water bodies are a repository of pollutants, including trace metals, and since they are non-biodegradable, they have negative impact on the ecosystems. Trace metals are due to both anthropogenic and natural sources. Sediments are monitors of trace metal pollution. The study, therefore, aims at assessing the trace heavy metals (THM) in the surface sediments of coastal areas in Lagos State. Forty (40) sediments samples (top and sub-sediment soil) were collected from five coastal communities: Langbasa, Itumaro, Ibeshe, Epe and Badagry, analyzed for pH and trace metals using Atomic Absorption Spectrometry (AAS). Ecological tools: pollution classification, pollution index, and geo accumulation index were further used along with application of sediments quality guidelines to reveal trends and variations in sediment investigated. The pH values range from 4.7- 6.4, while the trace metals concentration ranges from 1.6 - 6.42, 36.2 - 104.5, 0.05 - 63.6, 0.00 - 0.17, 32.1 - 266.3, 3.7 - 5.94, 0.00 - 0.00 mg/kg for Zn, Fe, Cu, Pb, Ca, Mg and Ni respectively.  The order of concentration of the metals was Ca > Fe > mg > Cu > Zn > Pb. The monomial and overall ecological potential risks for the trace potentially toxic metals investigated (lead, iron, zinc and copper) in the study area posed low potential risk (<40) and (< 110) respectively. The order of deteriorations (potential risk) in the study area is Badagry > Ibeshe > Epe > Itumaro > Langbasa. Continuous monitoring of trace heavy metals is important to ensure health safety and sustainable environment.

Adekunbi, F. O., Elegbede, I. O., Akhiromen, D. I., Oluwagunke, T. O., & Oyatola, O. O. (2018). Impact of sand dredging activities on ecosystem and community survival in Ibeshe area of Lagos Lagoon, Nigeria. Journal of Geoscience and Environment Protection, 6(2), 112-125.
Crossref
 
Aduwo, A. I., & Adeniyi, I. F. (2018). The heavy metals/trace elements contents of sediments from Owalla Reservoir, Osun State, Southwest Nigeria. Advances in Oceanography and Limnology, 9(2), 68-78.
Crossref
 
Alengebawy, A., Abdelkhalek, S. T., Qureshi, S. R., & Wang, M. Q. (2021). Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics, 9(3), 42.
Crossref
 
Algül, F., & Beyhan, M. (2020) Concentrations and sources of heavy metals in shallow sediments in Lake Bafa, Turkey. Scientific Reports10, 11782.
Crossref
 
Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M. R., & Sadeghi, M. (2021). Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Frontiers in Pharmacology, 12, Article number 643972.
Crossref
 
Bigus, P., Tobiszewski, M., & Namieśnik, J. (2014). Historical records of organic pollutants in sediment cores. Marine pollution bulletin, 78(1-2), 26-42.
Crossref
 
Canadian Environmental Quality Guidelines (CEQG) (2003). Canadian sediment quality guidelines for the protection of aquatic life. Hull, Canada.
 
Chakravarty, M., & Patgiri, A. D. (2009). Metal pollution assessment in sediments of the Dikrong River, NE India. Journal of Human Ecology, 27(1), 63-67.
Crossref
 
Chatterjee, M., Silva Filho, E. V., Sarkar, S. K., Sella. S. M., Bhattacharya, A., Satpathy, K. K., Prasad, M. V., Chakraborty, S., & Bhattacharya, B. D. (2007). Distribution and possible source of trace elements in the sediment cores of a tropical macrotidal estuary and their ecotoxicological significance. Environment International, 33(3), 346-356.
Crossref
 
Cobbina, S. J., Chen, Y., Zhou, Z., Wu, X., Zhao, T., Zhang, Z., Feng, W., Wang, W., Li, Q., Wu, X., & Yang, L. (2015). Toxicity assessment due to sub-chronic exposure to individual and mixtures of four toxic heavy metals. Journal of Hazardous Materials, 294, 109-120.
Crossref
 
Diatta, J. B., Kociałkowski, W. Z., & Grzebisz, W. (2003). Lead and zinc partition coefficients of selected soils evaluated by Langmuir, Freundlich, and linear isotherms. Communications in soil Science and Plant Analysis, 34(17-18), 2419-2439.
Crossref
 
Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z. I., Knowler, D. J., Lévêque, C., Naiman, R. J., Prieur-Richard, A. H., Soto, D., Stiassny, M. L., & Sullivan, C. A. (2006). Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews, 81(2), 163-182.
Crossref
 
Essien, J. P., Ikpe, D. I., Inam, E. D., Okon, A. O., Ebong, G. A., & Benson, N. U. (2022). Occurrence and spatial distribution of heavy metals in landfill leachates and impacted freshwater ecosystem: An environmental and human health threat. Plos One, 17(2), e0263279.
Crossref
 
Farkas, A., Erratico, C., & Viganò, L. (2007). Assessment of the environmental significance of heavy metal pollution in surficial sediments of the River Po. Chemosphere, 68(4), 761-768.
Crossref
 
Fashola, M. O., Ngole-Jeme, V. M., & Babalola, O. O. (2016). Heavy metal pollution from gold mines: environmental effects and bacterial strategies for resistance. International Journal of Environmental Research and Public Health, 13(11), 1047.
Crossref
 
Fathollahzadeh, H., Kaczala, F., Bhatnagar, A., & Hogland, W. (2014). Speciation of metals in contaminated sediments from Oskarshamn Harbor, Oskarshamn, Sweden. Environmental Science and Pollution Research, 21, 2455-2464.
Crossref
 
Gao, X., Zhuang, W., Chen, C. T. A., & Zhang, Y. (2015). Sediment quality of the SW coastal Laizhou Bay, Bohai Sea, China: a comprehensive assessment based on the analysis of heavy metals. PLoS One, 10(3), e0122190.
Crossref
 
Graf, W., Leitner, P., Hanetseder, I., Ittner, L. D., Dossi, F., & Hauer, C. (2016). Ecological degradation of a meandering river by local channelization effects: A case study in an Austrian lowland river. Hydrobiologia, 772, 145-160.
Crossref
 
Hadzi, G. Y. (2022). Effect of mining on heavy metals toxicity and health risk in selected Rivers of Ghana. In: Saleh, H. M., & Hassan, A. I. (eds.). Environmental Impact and Remediation of Heavy Metals.
 
Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water research, 14(8), 975-1001.
Crossref
 
Harikrishnan, N., Ravisankar, R., Gandhi, M. S., Kanagasabapathy, K. V., Prasad, M. V. R., & Satapathy, K. K. (2017). Heavy metal assessment in sediments of east coast of Tamil Nadu using energy dispersive X-ray fluorescence spectroscopy. Radiation Protection and Environment, 40(1), 21-26.
Crossref
 
Horsfall, M. J., & Spiff, A. I. (2005). Distribution of Trace Metals in Humic and Fulvic Acids in Sediments of the New Calabar River, Port Harcourt, Nigeria. Asian Journal of Water, Environment and Pollution, 2(2), 75-79.
 
Ilechukwu, I., Olusina, T. A., & Echeta, O. C. (2020). Physicochemical analysis of water and sediments of Usuma Dam, Abuja, Nigeria. Ovidius University Annals of Chemistry, 31(2), 80-87.
Crossref
 
Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60-72.
Crossref
 
Kloke, A. (1980). Orientierungsdaten fur tolerierbare Gesamtgehalte einiger Elemente in Kulturboden. Mitt VDLUFA, 1, 9-11.
 
Kostka, A., & Leśniak, A. (2021). Natural and anthropogenic origin of metals in lacustrine sediments; assessment and consequences-A case study of Wigry lake (Poland). Minerals, 11(2), 158.
Crossref
 
Lacatusu, R. (1998). Appraising levels of soil contamination and pollution with heavy metal. European Soil Bureau Joint Research Centre. Pp. 393-402.
 
Liu, C., Zhang, Y., Zhang, F. E., Zhang, S., Yin, M., Ye, H., Hou, H., Dong, H., Zhang, M., Jiang, J., & Pei, L. (2007). Assessing pollutions of soil and plant by municipal waste dump. Environmental Geology, 52(4), 641-651.
Crossref
 
Luo, L., Wang, B., Jiang, J., Fitzgerald, M., Huang, Q., Yu, Z., Li, H., Zhang, J., Wei, J., Yang, C., & Chen, S. (2021). Heavy metal contaminations in herbal medicines: Determination, comprehensive risk assessments, and solutions. Frontiers in pharmacology, 11, 595335.
Crossref
 
Majolagbe, A. O., Osibanjo, O., Yusuf, K. A., & Olowu, R. A. (2012). Trace metals distribution and contamination in the surface marine sediments of Roro Bay in Lagos, Nigeria. Chemistry Journal, 2(2), 69-78.
 
Majolagbe, A. O., Yusuf, K. A., & Adeyi, A.A. (2017).Environmental and Ecological Risk Assessment of Heavy Metal in Dredged Sediments in Lagos, Nigeria: An index Approach Analyses. Journal of Research and Review in Science, 4, 129-137.
Crossref
 
Masindi, V., & Muedi, K. L. (2018). Environmental contamination by heavy metals. Heavy Metals, 10, 115-132.
Crossref
 
National Research Council (NRC) (2008). Urban stormwater management in United States. Washington D.C. Pp. 18-20.
 
Olaniyi, S. R., & Popoola, S. O. (2021). Trace metal concentrations of surface sediments and total organic carbon of sediment core recovered from Lagos coastal waters, south western Nigeria. Scholars International Journal of Chemistry and Material Sciences, 4(5), 92-102.
 
Poh, S. C., Tahir, N. M., Zuki, H. M., Musa, M. I., Ng, K. H., Azhar, N., & Shazili, M. (2006). Heavy metal contents in soil of major towns in the east coast of Peninsular Malaysia. Acta Geochimica, 25, 56-60.
Crossref
 
Praveena, S. M., Radojevic, M., Abdullah, M. H., & Aris, A. Z. (2008). Application of sediment quality guidelines in the assessment of mangrove surface sediment in Mengkabong lagoon, Sabah, Malaysia. Journal of Environmental Health Science & Engineering, 5(1), 35-42.
 
Preda, M., & Cox, M. E. (2002). Trace metal occurrence and distribution in sediments and mangroves, Pumicestone region, southeast Queensland, Australia. Environment International, 28(5), 433-449.
Crossref
 
Rajeshkumar, S., & Li, X. (2018). Bioaccumulation of heavy metals in fish species from the Meiliang Bay, Taihu Lake, China. Toxicology Reports, 5, 288-295.
Crossref
 
Rice, K. M., Walker Jr, E. M., Wu, M., Gillette, C., & Blough, E. R. (2014). Environmental mercury and its toxic effects. Journal of Preventive Medicine and Public Health, 47(2), 74-83.
Crossref
 
Segura, R., Arancibia, V., Zúñiga, M. C., & Pastén, P. (2006). Distribution of copper, zinc, lead and cadmium concentrations in stream sediments from the Mapocho River in Santiago, Chile. Journal of geochemical exploration, 91(1-3), 71-80.
Crossref
 
State Environmental Protection Administration of China (SEPA) (2002). Marine Sediment Quality (GB 18668-2002). Beijing: Standards Press of China.
 
Su, T. Y., Pan, C. H., Hsu, Y. T., & Lai, C. H. (2019). Effects of heavy metal exposure on shipyard welders: a cautionary note for 8-Hydroxy-2′-Deoxyguanosine. International Journal of Environmental Research and Public Health, 16(23), 4813.
Crossref
 
Sutherland, R. A., & Tolosa, C. A. (2000). Multi-element analysis of road-deposited sediment in an urban drainage basin, Honolulu, Hawaii. Environmental pollution, 110(3), 483-495.
Crossref
 
Teta, C., & Hikwa, T. (2017). Heavy metal contamination of ground water from an unlined landfill in Bulawayo, Zimbabwe. Journal of Health and Pollution, 7(15), 18-27.
Crossref
 
Viers, J., Dupré, B., & Gaillardet, J. (2009). Chemical composition of suspended sediments in World Rivers: New insights from a new database. Science of the Total Environment, 407(2), 853-868.
Crossref
 
Vilela, C. G., Batista, D. S., Batista-Neto, J. A., Crapez, M., & Mcallister, J. J. (2004). Benthic foraminifera distribution in high polluted sediments from Niterói Harbor (Guanabara Bay), Rio de Janeiro, Brazil. Anais da Academia Brasileira de Ciências, 76, 161-171.
Crossref
 
Wang, C., Liu, S., Zhao, Q., Deng, L., & Dong, S. (2012). Spatial variation and contamination assessment of heavy metals in sediments in the Manwan Reservoir, Lancang River. Ecotoxicology and Environmental Safety, 82, 32-39.
Crossref
 
Wu, H., & Ge, Y. (2019). Excessive application of fertilizer, agricultural non-point source pollution, and farmers' policy choice. Sustainability, 11(4), 1165.
Crossref
 
Yuan, X., Yang, Q., Luo, X., Yu, F., Liu, F., Li, J., & Wang, Z. (2019). Distribution of grain size and organic elemental composition of the surficial sediments in Lingding Bay in the Pearl River Delta, China: A record of recent human activity. Ocean & Coastal Management, 178, 104849.
Crossref
 
Zhang, L., Liao, Q., Shao, S., Zhang, N., Shen, Q., & Liu, C. (2015). Heavy metal pollution, fractionation, and potential ecological risks in sediments from Lake Chaohu (Eastern China) and the surrounding rivers. International Journal of Environmental Research and Public Health, 12(11), 14115-14131.
Crossref