GLOBAL JOURNAL OF EARTH AND ENVIRONMENTAL SCIENCE
Integrity Research Journals

ISSN: 2636-6002
Model: Open Access/Peer Reviewed
DOI: 10.31248/GJEES
Start Year: 2016
Email: gjees@integrityresjournals.org


Effects of lithology and weathering on mineral nutrient elements uptake by plants – A review

https://doi.org/10.31248/GJEES2024.158   |   Article Number: 04EF738C1   |   Vol.9 (3) - October 2024

Received Date: 15 August 2024   |   Accepted Date: 20 September 2024  |   Published Date: 30 October 2024

Authors:  Kabiru Usman* and Rilwanu Muhammad

Keywords: nutrient., soils., mineral, Element, plants, rock, weathering

Mineral is an inorganic element required in minute quantity as an essential nutrient by living organisms to undertake functions necessary to sustain life. Minerals include iron, potassium, nitrogen, calcium, phosphorus, sodium, and sulfur. The formation of soils during weathering processes contributes greatly to the biogeochemical cycling of these elements. Sedimentary rocks have been the most important soil parent materials and thus, the accessibility of mineral nutrient elements to plants is dependent on the ease of weathering of rocks as well as their compositions. The process of weathering is in turn influenced by lithology which makes available new mineral elements of different reactivity for weathering reactions. Natural sources such as soil and water are the two most important sources of mineral nutrient elements for plants. The ability of soil to supply the plants with important nutrient mineral elements as well as the production of quality agricultural crop produce in a given community is all linked to the parent material a soil originated from. In this review, the functions of some mineral elements, accessibility and bioavailability of mineral nutrient elements to plants are discussed. The distribution and influence of lithology and parent materials on crop production in plants are also elucidated.

Abdullahi, A., Lawal, M. A., & Salisu, A. M. (2021). Heavy Metals in Contaminated Soil: Source, Accumulation, Health Risk and Remediation Process. Bayero Journal of Pure and Applied Sciences, 14(1), 1-12.
https://doi.org/10.4314/bajopas.v14i1.1
 
Afu, S. M., Isong, I. A., & Aki, E. E. (2017). Variability of selected physico-chemical properties of soil overlying different parent materials in Odukpani, Cross River State. International Journal of Plant and Soil Science, 20(6), 1-14.
https://doi.org/10.9734/IJPSS/2017/38317
 
Afu, S. M., Isong, I. A., Akpan, J. F., Olim. D. M., & Eziedo, P. C. (2021). Spatial assessment of heavy metal contamination in agricultural soils developed on basaltic and sandstone parent materials. Journal of Environmental Science and Technology, 14, 21-34.
https://doi.org/10.3923/jest.2021.21.34
 
Brantley, S. L., Buss, H., Lebedeva, M., Fletcher, R. C., Ma, L. (2011). Investigating the complex interface where bedrock transforms to regolith. Applied Geochemistry, 26, S12-S15.
https://doi.org/10.1016/j.apgeochem.2011.03.017
 
Buss, H. L., Lara, M. C., Moore, O. W., Kurtz, A. C., Schulz, M. S., & White, A. F. (2017). Lithological influences on contemporary and long-term regolith weathering at the Luquillo Critical Zone Observatory. Geochimica et Cosmochimica Acta, 196, 224-251.
https://doi.org/10.1016/j.gca.2016.09.038
 
Chapela Lara. C., Buss, H. L., & Pett-Ridge, J. C. (2018). The effects of lithology on trace element and REE behavior during tropical weathering. Chemical Geology, 500, 88-102.
https://doi.org/10.1016/j.chemgeo.2018.09.024
 
Cox, P. A. (1995). The elements on earth, inorganic chemistry in the environment. Oxford University Press Inc., New York.
 
Dawson, R. L., Calear, A. L., McCallum, S. M., McKenna, S., Nixon, R. D., & O'Kearney, R. (2020). Exposure‐based writing therapies for subthreshold and clinical posttraumatic stress disorder: A systematic review and meta‐analysis. Journal of Traumatic Stress, 34(1), 81-91.
https://doi.org/10.1002/jts.22596
 
Fang, W., Hu, R., & Wu, P. (2002). Influence of black shales on soils and edible plants in the Ankang area, Shaanxi Province, PR of China. Environmental Geochemistry and Health, 24, 35-46.
https://doi.org/10.1023/A:1013981016542
 
Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G. C., Gibbs, H. K., & Snyder, P. K. (2005). Global consequences of land use. Science, 309(5734), 570-574.
https://doi.org/10.1126/science.1111772
 
Frings, P. J., & Buss, H. L. (2019). The central role of weathering in the geosciences. Elements: An International Magazine of Mineralogy, Geochemistry, and Petrology, 15(4), 229-234.
https://doi.org/10.2138/gselements.15.4.229
 
Garí, J. A. (2003). Agrobiodiversity strategies to combat food insecurity and HIV/AIDS impact in rural Africa. Advancing Grassroots Responses for Nutrition, Health and Sustainable Livelihoods, Population and Development Service, FAO, Rome, Italy, 2003
 
Hu, X., Wei, X., Ling, J., & Chen, J. (2021). Cobalt: an essential micronutrient for plant growth? Frontiers in Plant Science, 12, 768523.
https://doi.org/10.3389/fpls.2021.768523
 
Irmak, S., Surucu, A. K., & Aydogdu, I. H. (2007). Effects of different parent material on the mineral characteristics of soils in the arid region of Turkey. Pakistan Journal of Biological Sciences, 10(4), 528-536.
https://doi.org/10.3923/pjbs.2007.528.536
 
Jimenez, L. C. Z., Queiroz, H. M., Cherubin, M. R., & Ferreira, T. O. (2022). Applying the soil management assessment framework (SMAF) to assess mangrove soil quality. Sustainability, 14(5), 3085.
https://doi.org/10.3390/su14053085
 
Kabata-Pendias, A. and Pendias, H. (2002). Trace elements in soils and plants. Lewis, Boca Raton.
 
Kwong, Y. J., Whitley, G., & Roach, P. (2009). Natural acid rock drainage associated with black shale in the Yukon Territory, Canada. Applied Geochemistry, 24(2), 221-231.
https://doi.org/10.1016/j.apgeochem.2008.11.017
 
Lee, S., & Aronoff, S. (1967). Boron in plants: a biochemical role. Science, 158(3802), 798-799.
https://doi.org/10.1126/science.158.3802.798
 
Lewis, D. H. (2019). Boron: The essential element for vascular plants that never was. New Phytologist, 221(4), 1685-1690.
https://doi.org/10.1111/nph.15519
 
Malhotra, N., Hsu, H. S., Liang, S. T., Roldan, M. J. M., Lee, J. S., Ger, T. R., & Hsiao, C. D. (2020). An updated review of toxicity effect of the rare earth elements (REEs) on aquatic organisms. Animals, 10(9), 1663.
https://doi.org/10.3390/ani10091663
 
Moore, G. F., Evans, R. E., Hawkins, J., Littlecott, H. J., & Turley, R. (2017). All interventions are complex, but some are more complex than others: using iCAT_SR to assess complexity. The Cochrane Database of Systematic Reviews, 7, ED000122.
https://doi.org/10.1002/14651858.ED000122
 
Moore, L., Hallingberg, B., Wight, D., Turley, R., Segrott, J., Craig, P., Robling, M., Murphy, S., Simpson, S. A., & Moore, G. (2018). Exploratory studies to inform full-scale evaluations of complex public health interventions: the need for guidance. Journal of Epidemiol Community Health, 72(10), 865-866.
https://doi.org/10.1136/jech-2017-210414
 
Nganje, T. N., & Adamu, C. I. (2014). A Comparative Study of Element Cycling in the Soil-Plant System: A Case Study of Shaly and Calcareous Soils, Southern Benue Trough, Nigeria. International Journal of Geosciences, 5, 453-463.
https://doi.org/10.4236/ijg.2014.54043
 
Ofem, K. I., Asadu, C. L. A., Ezeaku, P. I., Kingsley, J., Eyong, M. O., Katerina, V., Václav, T., Karel, N., Ondřej, D., & Vít, P. (2020). Genesis and classification of soils over limestone formations in a tropical humid region. Asian Journal of Scientific Research, 13, 228-243.
https://doi.org/10.3923/ajsr.2020.228.243
 
Ogunbode, A. A., Mustapha, T. B., Adams, T. O., Stephen, F. T., & Amusat, W. A. (2021). Evaluation of selected minerals in the blood of crossbred pigs fed toasted soybean hull. Nigerian Journal of Animal Production, 48(1), 135-141.
https://doi.org/10.51791/njap.v48i1.2907
 
Ozcan, M. (2003). Mineral contents of some plants used as condiments in Turkey. Food Chemistry, 84, 437-440.
https://doi.org/10.1016/S0308-8146(03)00263-2
 
Porder, S., Johnson, A. H., Xing, H. X., Brocard, G., Goldsmith, S., & Pett-Ridge, J. (2015). Linking geomorphology, weathering and cation availability in the Luquillo Mountains of Puerto Rico. Geoderma, 249, 100-110.
https://doi.org/10.1016/j.geoderma.2015.03.002
 
Siegel, F. R. (2002). Environmental geochemistry of potentially toxic metals (Vol. 32). Berlin: springer.
https://doi.org/10.1007/978-3-662-04739-2
 
Soetan, K. O., Olaiya C. O., & Oyewole, O. E. (2010). The importance of mineral elements for humans, domestic animals and plants - A review. African Journal of Food Science, 4(5), 200- 222.
 
Uhlig, D., & von Blanckenburg, F. (2019). Geochemical and isotope data on rock weathering, and nutrient balances during fast forest floor turnover in montane, temperate forest ecosystems. GFZ Data Services. Retrieved from http://doi.org/10.5880/GFZ.3.3.2019.004
https://doi.org/10.3389/feart.2019.00159
 
Uhlig, D., Schuessler, J. A., Bouchez, J., Dixon, J. L., & von Blanckenburg, F. (2017). Quantifying nutrient uptake as driver of rock weathering in forest ecosystems by magnesium stable isotopes. Biogeosciences, 14(12), 3111-3128.
https://doi.org/10.5194/bg-14-3111-2017
 
Williams, U. S. (2020). A revised textbook of Biology. Cheltenham, Nelson Thornes.
 
Yeboah, J. O., Shi, G., & Shi, W. (2021). Effect of heavy metal contamination on soil enzymes activities. Journal of Geoscience and Environment Protection, 9(6), 135-154.
https://doi.org/10.4236/gep.2021.96008