ISSN: 2636-6002
Model: Open Access/Peer Reviewed
DOI: 10.31248/GJEES
Start Year: 2016
Email: gjees@integrityresjournals.org
https://doi.org/10.31248/GJEES2024.158 | Article Number: 04EF738C1 | Vol.9 (3) - October 2024
Received Date: 15 August 2024 | Accepted Date: 20 September 2024 | Published Date: 30 October 2024
Authors: Kabiru Usman* and Rilwanu Muhammad
Keywords: nutrient., soils., mineral, Element, plants, rock, weathering
Mineral is an inorganic element required in minute quantity as an essential nutrient by living organisms to undertake functions necessary to sustain life. Minerals include iron, potassium, nitrogen, calcium, phosphorus, sodium, and sulfur. The formation of soils during weathering processes contributes greatly to the biogeochemical cycling of these elements. Sedimentary rocks have been the most important soil parent materials and thus, the accessibility of mineral nutrient elements to plants is dependent on the ease of weathering of rocks as well as their compositions. The process of weathering is in turn influenced by lithology which makes available new mineral elements of different reactivity for weathering reactions. Natural sources such as soil and water are the two most important sources of mineral nutrient elements for plants. The ability of soil to supply the plants with important nutrient mineral elements as well as the production of quality agricultural crop produce in a given community is all linked to the parent material a soil originated from. In this review, the functions of some mineral elements, accessibility and bioavailability of mineral nutrient elements to plants are discussed. The distribution and influence of lithology and parent materials on crop production in plants are also elucidated.
| Abdullahi, A., Lawal, M. A., & Salisu, A. M. (2021). Heavy Metals in Contaminated Soil: Source, Accumulation, Health Risk and Remediation Process. Bayero Journal of Pure and Applied Sciences, 14(1), 1-12. https://doi.org/10.4314/bajopas.v14i1.1 |
||||
| Afu, S. M., Isong, I. A., & Aki, E. E. (2017). Variability of selected physico-chemical properties of soil overlying different parent materials in Odukpani, Cross River State. International Journal of Plant and Soil Science, 20(6), 1-14. https://doi.org/10.9734/IJPSS/2017/38317 |
||||
| Afu, S. M., Isong, I. A., Akpan, J. F., Olim. D. M., & Eziedo, P. C. (2021). Spatial assessment of heavy metal contamination in agricultural soils developed on basaltic and sandstone parent materials. Journal of Environmental Science and Technology, 14, 21-34. https://doi.org/10.3923/jest.2021.21.34 |
||||
| Brantley, S. L., Buss, H., Lebedeva, M., Fletcher, R. C., Ma, L. (2011). Investigating the complex interface where bedrock transforms to regolith. Applied Geochemistry, 26, S12-S15. https://doi.org/10.1016/j.apgeochem.2011.03.017 |
||||
| Buss, H. L., Lara, M. C., Moore, O. W., Kurtz, A. C., Schulz, M. S., & White, A. F. (2017). Lithological influences on contemporary and long-term regolith weathering at the Luquillo Critical Zone Observatory. Geochimica et Cosmochimica Acta, 196, 224-251. https://doi.org/10.1016/j.gca.2016.09.038 |
||||
| Chapela Lara. C., Buss, H. L., & Pett-Ridge, J. C. (2018). The effects of lithology on trace element and REE behavior during tropical weathering. Chemical Geology, 500, 88-102. https://doi.org/10.1016/j.chemgeo.2018.09.024 |
||||
| Cox, P. A. (1995). The elements on earth, inorganic chemistry in the environment. Oxford University Press Inc., New York. | ||||
| Dawson, R. L., Calear, A. L., McCallum, S. M., McKenna, S., Nixon, R. D., & O'Kearney, R. (2020). Exposure‐based writing therapies for subthreshold and clinical posttraumatic stress disorder: A systematic review and meta‐analysis. Journal of Traumatic Stress, 34(1), 81-91. https://doi.org/10.1002/jts.22596 |
||||
| Fang, W., Hu, R., & Wu, P. (2002). Influence of black shales on soils and edible plants in the Ankang area, Shaanxi Province, PR of China. Environmental Geochemistry and Health, 24, 35-46. https://doi.org/10.1023/A:1013981016542 |
||||
| Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G. C., Gibbs, H. K., & Snyder, P. K. (2005). Global consequences of land use. Science, 309(5734), 570-574. https://doi.org/10.1126/science.1111772 |
||||
| Frings, P. J., & Buss, H. L. (2019). The central role of weathering in the geosciences. Elements: An International Magazine of Mineralogy, Geochemistry, and Petrology, 15(4), 229-234. https://doi.org/10.2138/gselements.15.4.229 |
||||
| Garí, J. A. (2003). Agrobiodiversity strategies to combat food insecurity and HIV/AIDS impact in rural Africa. Advancing Grassroots Responses for Nutrition, Health and Sustainable Livelihoods, Population and Development Service, FAO, Rome, Italy, 2003 | ||||
| Hu, X., Wei, X., Ling, J., & Chen, J. (2021). Cobalt: an essential micronutrient for plant growth? Frontiers in Plant Science, 12, 768523. https://doi.org/10.3389/fpls.2021.768523 |
||||
| Irmak, S., Surucu, A. K., & Aydogdu, I. H. (2007). Effects of different parent material on the mineral characteristics of soils in the arid region of Turkey. Pakistan Journal of Biological Sciences, 10(4), 528-536. https://doi.org/10.3923/pjbs.2007.528.536 |
||||
| Jimenez, L. C. Z., Queiroz, H. M., Cherubin, M. R., & Ferreira, T. O. (2022). Applying the soil management assessment framework (SMAF) to assess mangrove soil quality. Sustainability, 14(5), 3085. https://doi.org/10.3390/su14053085 |
||||
| Kabata-Pendias, A. and Pendias, H. (2002). Trace elements in soils and plants. Lewis, Boca Raton. | ||||
| Kwong, Y. J., Whitley, G., & Roach, P. (2009). Natural acid rock drainage associated with black shale in the Yukon Territory, Canada. Applied Geochemistry, 24(2), 221-231. https://doi.org/10.1016/j.apgeochem.2008.11.017 |
||||
| Lee, S., & Aronoff, S. (1967). Boron in plants: a biochemical role. Science, 158(3802), 798-799. https://doi.org/10.1126/science.158.3802.798 |
||||
| Lewis, D. H. (2019). Boron: The essential element for vascular plants that never was. New Phytologist, 221(4), 1685-1690. https://doi.org/10.1111/nph.15519 |
||||
| Malhotra, N., Hsu, H. S., Liang, S. T., Roldan, M. J. M., Lee, J. S., Ger, T. R., & Hsiao, C. D. (2020). An updated review of toxicity effect of the rare earth elements (REEs) on aquatic organisms. Animals, 10(9), 1663. https://doi.org/10.3390/ani10091663 |
||||
| Moore, G. F., Evans, R. E., Hawkins, J., Littlecott, H. J., & Turley, R. (2017). All interventions are complex, but some are more complex than others: using iCAT_SR to assess complexity. The Cochrane Database of Systematic Reviews, 7, ED000122. https://doi.org/10.1002/14651858.ED000122 |
||||
| Moore, L., Hallingberg, B., Wight, D., Turley, R., Segrott, J., Craig, P., Robling, M., Murphy, S., Simpson, S. A., & Moore, G. (2018). Exploratory studies to inform full-scale evaluations of complex public health interventions: the need for guidance. Journal of Epidemiol Community Health, 72(10), 865-866. https://doi.org/10.1136/jech-2017-210414 |
||||
| Nganje, T. N., & Adamu, C. I. (2014). A Comparative Study of Element Cycling in the Soil-Plant System: A Case Study of Shaly and Calcareous Soils, Southern Benue Trough, Nigeria. International Journal of Geosciences, 5, 453-463. https://doi.org/10.4236/ijg.2014.54043 |
||||
| Ofem, K. I., Asadu, C. L. A., Ezeaku, P. I., Kingsley, J., Eyong, M. O., Katerina, V., Václav, T., Karel, N., Ondřej, D., & Vít, P. (2020). Genesis and classification of soils over limestone formations in a tropical humid region. Asian Journal of Scientific Research, 13, 228-243. https://doi.org/10.3923/ajsr.2020.228.243 |
||||
| Ogunbode, A. A., Mustapha, T. B., Adams, T. O., Stephen, F. T., & Amusat, W. A. (2021). Evaluation of selected minerals in the blood of crossbred pigs fed toasted soybean hull. Nigerian Journal of Animal Production, 48(1), 135-141. https://doi.org/10.51791/njap.v48i1.2907 |
||||
| Ozcan, M. (2003). Mineral contents of some plants used as condiments in Turkey. Food Chemistry, 84, 437-440. https://doi.org/10.1016/S0308-8146(03)00263-2 |
||||
| Porder, S., Johnson, A. H., Xing, H. X., Brocard, G., Goldsmith, S., & Pett-Ridge, J. (2015). Linking geomorphology, weathering and cation availability in the Luquillo Mountains of Puerto Rico. Geoderma, 249, 100-110. https://doi.org/10.1016/j.geoderma.2015.03.002 |
||||
| Siegel, F. R. (2002). Environmental geochemistry of potentially toxic metals (Vol. 32). Berlin: springer. https://doi.org/10.1007/978-3-662-04739-2 |
||||
| Soetan, K. O., Olaiya C. O., & Oyewole, O. E. (2010). The importance of mineral elements for humans, domestic animals and plants - A review. African Journal of Food Science, 4(5), 200- 222. | ||||
| Uhlig, D., & von Blanckenburg, F. (2019). Geochemical and isotope data on rock weathering, and nutrient balances during fast forest floor turnover in montane, temperate forest ecosystems. GFZ Data Services. Retrieved from http://doi.org/10.5880/GFZ.3.3.2019.004 https://doi.org/10.3389/feart.2019.00159 |
||||
| Uhlig, D., Schuessler, J. A., Bouchez, J., Dixon, J. L., & von Blanckenburg, F. (2017). Quantifying nutrient uptake as driver of rock weathering in forest ecosystems by magnesium stable isotopes. Biogeosciences, 14(12), 3111-3128. https://doi.org/10.5194/bg-14-3111-2017 |
||||
| Williams, U. S. (2020). A revised textbook of Biology. Cheltenham, Nelson Thornes. | ||||
| Yeboah, J. O., Shi, G., & Shi, W. (2021). Effect of heavy metal contamination on soil enzymes activities. Journal of Geoscience and Environment Protection, 9(6), 135-154. https://doi.org/10.4236/gep.2021.96008 |
||||