APPLIED JOURNAL OF PHYSICAL SCIENCE
Integrity Research Journals

ISSN: 2756-6684
Model: Open Access/Peer Reviewed
DOI: 10.31248/AJPS
Start Year: 2018
Email: ajps@integrityresjournals.org


Structural, physical and passive radiation shielding efficiency of bismuth ore and barium oxide doped sand-sourced glasses

https://doi.org/10.31248/AJPS2024.109   |   Article Number: C8B5919F1   |   Vol.6 (1) - February 2025

Received Date: 13 November 2024   |   Accepted Date: 15 January 2025  |   Published Date: 28 February 2025

Authors:  Jibrin Suleiman Yaro* , Aliyu Abubakar Sadiq , Aliyu Umar Sa’ad , Hamza Abdulkarim Muhammad , Jamilu Ari Labaran , Ali Musa Kazzayo , Ibrahim Abullahi Ode and Lawal Abdullahi

Keywords: FT-IR, Glass sand, Bismutite, Barium Oxide, XRD, Radiation shielding parameters, Gamma rays radiation.

Concrete and lead-based aggregates are communal shielding materials against penetrating radiations, X-rays and gamma photons. Conversely, lead is expensive and chemically hazardous, and concrete ages become opaque. The continuous search for alternative radiation shielding materials has been motivated. Nigerian small-scale mining has produced mineral ores that contain glass sand and bismuth ore. Analysis revealed that 85.20% of the bismuth ore and glass sand was composed of 78.99% silica. Glass sand-sourced silica was used to create the innovative glass series, which also contained bismutite and barium oxide as dopants to change the glass's desired characteristics. The glass series was fabricated using the melt quenching method, having the empirical chemical formula (100-y) {85[25(glasssand) + 35B2O3+40Na2CO3] + 15BaO}y[Bi2O2CO3], where. The novel glass was characterized using measurements. The density of the glass increased from 2.919 to 3.532 g/cm3. The refractive index value range of the glass system is 2.23-2.49. The glasses were confirmed amorphous as the XRD pattern revealed, whereas the FTIR analysis showed the presence of BO3 and SiO4 structural units. The Gamma-Ray experiment was carried out on all glass samples using two radioactive gamma point sources, namely, Caesium-137 and Co-60, the results show that the LAC decreases and increases at different weight percentages ranging from 5 to 25%, GLS25 have the highest LAC while the least LAC was observed at GLS15 for the two gamma source. MAC of the glass system, as the content of Bi2O2CO3 changes from 5 to 25 wt. %, the values of MAC at energy (661KeV) and energy (1235KeV) show a similar decreasing and increasing behaviour as exhibited by LAC. The observed increase in MAC of the prepared glasses might be linked with an increase in glass effective density as well as mass density, which thereby results in a high probability of photon interaction. The values of HVL and TVL for Caesium-137 increase from 2.449954 to 5.344431 cm then decrease to 2.046755 cm (HVL) and 8.138571 cm to 17.75381cm to 6.799175 cm (TVL), respectively. These results show that the samples doped with a greater wt. % of Bi2O2CO3 have the lowest HVL and TVL values for Caesium-137 and Cobalt-60. A drop in HVL and TVL for the two gamma sources is a direct result of a density increase. HVL and TVL values are lower in good shielding materials. The MFP for both Cobalt-60 and Caesium-137 is comparable to HVL and TVL. With the exception of GLS15, which has the highest MFP (8.64259 cm) for Caesium-137 and the lowest MFP (2.952844 cm) for Cobalt-60, the MFP values decrease as the amount of Bi2O2CO3 increases. It also has the greatest LAC and density values among the created glass samples. It is shown that the innovative glasses have higher performance in radiation shields.

Abdul Aziz, S. H., El-Mallawany, R., Badaron, S. S., Kamari, H. M., & Amin Matori, K. (2015). Optical properties of erbium zinc tellurite glass system. Advances in Materials Science and Engineering, 2015(1), 628954.
https://doi.org/10.1155/2015/628954
 
Acevedo-Del-Castillo, A., Águila-Toledo, E., Maldonado-Magnere, S., & Aguilar-Bolados, H. (2021). A brief review on the high-energy electromagnetic radiation-shielding materials based on polymer nanocomposites. International Journal of Molecular Sciences, 22(16), 9079.
https://doi.org/10.3390/ijms22169079
 
Alazoumi, S. H., Sidek, H. A. A., Halimah, M. K., Matori, K. A., Zaid, M. H. M., & Abdulbaset, A. A. (2017). Synthesis and elastic properties of ternary ZnO-PbO-TeO2 glasses. Chalcogenide Letters, 14(8), 303-320.
 
Al-Buriahi, M. S., Rashad, M., Alalawi, A., & Sayyed, M. I. (2020). Effect of Bi2O3 on mechanical features and radiation shielding properties of boro-tellurite glass system. Ceramics International, 46(10), 16452-16458.
https://doi.org/10.1016/j.ceramint.2020.03.208
 
Aliyu, U. S., Kamari, H. M., Hamza, A. M., & Awshah, A. A. (2018). The structural, physical and optical properties of borotellurite glasses incorporated with silica from rice husk. Journal of Science and Mathematics Letters, 6, 32-46.
https://doi.org/10.37134/jsml.vol6.4.2018
 
Andreeva, P., Stoilov, V., & Petrov, O. (2011). Application of X-Ray diffraction analysis for sedimentological investigation of Middle Devonian dolomites from Northeastern Bulgaria. Geologica Balcanica, 40(1-3), 31-38.
https://doi.org/10.52321/GeolBalc.40.1-3.31
 
Bale, S., Rahman, S., Awasthi, A. M., & Sathe, V. (2008). Role of Bi2O3 content on physical, optical and vibrational studies in Bi2O3-ZnO-B2O3 glasses. Journal of Alloys and Compounds, 460(1-2), 699-703.
https://doi.org/10.1016/j.jallcom.2007.06.090
 
Baptista Neto, A. T., & Faria, L. O. (2014). Construction and calibration of a multipurpose instrument to simultaneously measure dose, voltage and half-value layer in X-ray emission equipment. Radiation Measurements, 71, 178-182.
https://doi.org/10.1016/j.radmeas.2014.05.029
 
Berwal, N., Dhankhar, S., Sharma, P., Kundu, R. S., Punia, R., & Kishore, N. (2017a). Physical, structural and optical characterization of silicate modified bismuth-borate-tellurite glasses. Journal of Molecular Structure, 1127, 636-644.
https://doi.org/10.1016/j.molstruc.2016.08.033
 
Bunaciu, A. A., Udriştioiu, E. gabriela, & Aboul-Enein, H. Y. (2015). X-ray diffraction: instrumentation and applications. Critical Reviews in Analytical Chemistry, 45(4), 289-299.
https://doi.org/10.1080/10408347.2014.949616
 
Causin, V., Marega, C., Marigo, A., Casamassima, R., Peluso, G., &Ripani, L. (2010). Forensic differentiation of paper by x-ray diffraction and infrared spectroscopy. Forensic Science International, 197(1-3), 70-74.
https://doi.org/10.1016/j.forsciint.2009.12.056
 
Chanthima, N., Kaewkhao, J., Kedkaew, C., Chewpraditkul, W., Pokaipisit, A., &Limsuwan, P. (2011). Study on interaction of Bi2O3, PbO and BaO in silicate glass system at 662 keV for development of gamma-rays shielding materials. Progress in Nuclear Science and Technology, 1(0), 106-109.
https://doi.org/10.15669/pnst.1.106
 
Deepty, M., Srinivas, C., Kumar, E. R., Mohan, N. K., Prajapat, C. L., Rao, T. V. C.,Meena, S. S., Verma, A. K., & Sastry, D. L. (2019). XRD, EDX, FTIR and ESRS pectroscopic studies of Co-precipitated Mn-substituted Zn-ferrite nanoparticles. Ceramics International, 45(6), 8037-8044.
https://doi.org/10.1016/j.ceramint.2019.01.029
 
Connolly, J. R. (2005). Introduction to X-ray powder diffraction. Spring. Pp. 1-9. Retrieved from http://www.xray.cz/xray/ csca/kol2011/kurs/dalsi-cteni/connolly-2005/01-xrd-intro.pdf
 
Doweidar, H., El-Damrawi, G. M., Moustafa, Y. M., & Ramadan, R. M. (2005). Density of mixed alkali borate glasses: A structural analysis. Physica B: Condensed Matter, 362(1-4), 123-132.
https://doi.org/10.1016/j.physb.2005.02.001
 
Dutrow, B. L. (2020). X-ray Powder Diffraction (XRD). In Integrating Research and Education. Pp.21-24. Retrieved from https://serc.carleton.edu/research_education/geochemsheets/techniques/XRD.html
 
Elmahroug, Y., Almatari, M., Sayyed, M. I., Dong, M. G., & Tekin, H. O. (2018). Investigation of radiation shielding properties for Bi2O3-V2O5-TeO2 glass system using MCNP5 code. Journal of Non-Crystalline Solids, 499, 32-40.
https://doi.org/10.1016/j.jnoncrysol.2018.07.008
 
Elsafi, M., EL-Nahal, M.A., Sayyed, M.I., Saleh,I.H., & Abbas, M.I. (2021). Effect of bulk and nanoparticles Bi2O3 on attenuation capability of radiation shielding glass. Ceramics International, 47(14), 19651-19658.
https://doi.org/10.1016/j.ceramint.2021.03.302
 
Gaikwad, D. K., Obaid, S. S., Sayyed, M. I., Bhosale, R. R., Awasarmol, V. V., Kumar, A., Shirsat, M. D., & Pawar, P. P. (2018). Comparative study of gamma ray shielding competence of WO3-TeO2-PbO glass system to different glasses and concretes. Materials Chemistry and Physics, 213, 508-517.
https://doi.org/10.1016/j.matchemphys.2018.04.019
 
Halimah, M. K., Umar, S. A., Chan, K. T., Latif, A. A., Azlan, M. N., Abubakar, A. I., & Hamza, A. M. (2019). Study of Rice Husk Silicate Effects on the Elastic, Physical and Structural Properties of Borotellurite Glasses. Materials Chemistry and Physics, 238, 121891.
https://doi.org/10.1016/j.matchemphys.2019.121891
 
Han, T., Sun, X. Y., Lai, X., Yu, J., Xia, L., Guo, H., & Ye, X. (2021). Role of Gd2O3 on tailoring structural and optical properties of Tb3+-activated borogermanate-tellurite glasses. Radiation Physics and Chemistry, 189, 109734.
https://doi.org/10.1016/j.radphyschem.2021.109734
 
IAEA (2019). Postgraduate Education Course in Radiation Protection and Safety of Radiation Sources: Standard Syllabus. Training Course Series, 18, 12-14.
 
Jawad, A. A., Demirkol, N., Gunoğlu, K., & Akkurt, I. (2019). Radiation shielding properties of some ceramic wasted samples. International Journal of Environmental Science and Technology, 16, 5039-5042.
https://doi.org/10.1007/s13762-019-02240-7
 
Kolanoski, H., & Wermes, N. (2020). Introduction. In Particle Detectors: Fundamentals and Applications. Oxford University Press. Pp. 1-2. Retrieved from https://doi.org/10.1093/oso/ 9780198858362.003.0001.
https://doi.org/10.1093/oso/9780198858362.003.0001
 
Kumar, A., Gaikwad, D. K., Obaid, S. S., Tekin, H. O., & Sayyed, M. I. (2020). Experimental studies and monte carlo simulation on gamma ray shielding competence of (30+X) Pb-10WO3-10Na2O-10MgO-(40-X)B2O3 Glasses. Progress in Nuclear Energy, 119, 103047.
https://doi.org/10.1016/j.pnucene.2019.103047
 
Kundu, R. S., Dhankhar, S., Punia, R., Nanda, K., & Kishore, N. (2014). Bismuth modified physical, structural and optical properties of mid-IR transparent zinc boro-tellurite glasses. Journal of Alloys and Compounds, 587, 66-73.
https://doi.org/10.1016/j.jallcom.2013.10.141
 
Lacomme, E., Sayyed, M. I., Sidek, H. A. A., Matori, K. A., & Zaid, M. H. M. (2021). Effect of bismuth and lithium substitution on radiation shielding properties of zinc borate glass system using Phy-X/PSD simulation. Results in Physics, 20, 103768.
https://doi.org/10.1016/j.rinp.2020.103768
 
Mariyappan, M., Marimuthu, K., Sayyed, M. I., Dong, M. G., & Kara, U. (2018). Effect Bi2O3 on the physical, structural and radiation shielding properties of Er3+ ions doped bismuth sodium fluoroborate glasses. Journal of Non-Crystalline Solids, 499, 75-85.
https://doi.org/10.1016/j.jnoncrysol.2018.07.025
 
McCaffrey, J. P., Shen, H., Downton, B., &Mainegra-Hing, E. (2007). Radiation attenuation by lead and nonlead materials used in radiation shielding garments. Medical Physics, 34(2), 530-537.
https://doi.org/10.1118/1.2426404
 
Naseer, K. A., Marimuthu, K., Mahmoud, K. A., & Sayyed, M. I. (2021). Impact of Bi2O3 modifier concentration on barium-zincborate glasses: physical, structural, elastic, and radiation-shielding properties. European Physical Journal Plus, 136, 116.
https://doi.org/10.1140/epjp/s13360-020-01056-6
 
NDT (2017). Resource Education Center. https;//www.cnde. iastate.edu'ndt
 
Obaid, S. S., Gaikwad, D. K., &Pawar, P. P. (2018). Determination of gamma ray shielding parameters of rocks and concrete. Radiation Physics and Chemistry, 144, 356n-360.
https://doi.org/10.1016/j.radphyschem.2017.09.022
 
Olarinoye, I. O., El-Agawany, F. I., EL-Adaw, A., Yousef, E. S., & Rammah, Y. S. (2020). Mechanical features, alpha particles, photon, proton and neutron interaction parameters of TeO2-V2O3-MoO3 semiconductor glasses. Ceramics International, 46(14), 3134-23144.
https://doi.org/10.1016/j.ceramint.2020.06.093
 
Rachniyom, W., Ruangtaweep, Y., Kaewkhao, J., Ruengsri, S., &Phachana, K. (2014). Effects of Na2O on borosilicate glasses prepared from coal fired ash. Advanced Materials Research, 979, 271-274.
https://doi.org/10.4028/www.scientific.net/AMR.979.271
 
Rammah, Y. S., El-Agawany, F. I., Gamal, A., Olarinoye, I. O., Ahmed, E. M., Abuohaswa, A. S. (2021). Responsibility of Bi2O3 content in photon, alpha, proton, fast and thermal neutron shielding capacity and elastic moduli of zinc/B2O3/ Bi2O3 glasses. Journal of Inorganic and Organometallic Polymers and Materials, 31(8), 3505-3524.
https://doi.org/10.1007/s10904-021-01976-5
 
Sarachai, S., Chanthima, N., Sangwaranatee, N. W., Kothan, S., Kaewjaeng, S., Tungjai, M., Djamal, M., & Kaewkhao, J. (2018). Radiation shielding properties of BaO-ZnO-B2O3 glass for x-ray room. Key Engineering Materials, 766, 88-93.
https://doi.org/10.4028/www.scientific.net/KEM.766.88
 
Sarachai, S., Chanthima, N., Sangwaranatee, N. W., Kothan, S., Kaewjaeng, S., Tungjai, M., Djamal, M., & Kaewkhao, J. (2018). Radiation shielding properties of BaO-ZnO-B2O3 glass for x-ray room. Key Engineering Materials, 766, 88-93.
https://doi.org/10.4028/www.scientific.net/KEM.766.88
 
Sayyed, M. I., Kaky, K. M., Gaikwad, D. K., Agar, O., Gawai, U. P., & Baki, S. O. (2019). Physical, structural, optical and gamma radiation shielding properties of borate glasses containing heavy metals (Bi2O3/MoO3). Journal of Non-Crystalline Solids, 507, 30-37.
https://doi.org/10.1016/j.jnoncrysol.2018.12.010
 
Sekimoto, M., &Katoh, Y. (2015). Coloring characteristic of lead glass for x-ray irradiation. New Journal of Glass and Ceramics, 5(3), 25-30.
https://doi.org/10.4236/njgc.2015.53004
 
Singh, S., Kumar, A., Singh, D., Thind, K. S., &Mudahar, G. S. (2008). Barium-borate-flyash glasses: As radiation shielding materials. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 266(1), 140-146.
https://doi.org/10.1016/j.nimb.2007.10.018