ISSN: 2756-6684
Model: Open Access/Peer Reviewed
DOI: 10.31248/AJPS
Start Year: 2018
Email: ajps@integrityresjournals.org
https://doi.org/10.31248/AJPS2025.124 | Article Number: BA3567251 | Vol.6 (5) - December 2025
Received Date: 21 May 2025 | Accepted Date: 12 September 2025 | Published Date: 30 December 2025
Authors: Aungwa F.* , Jamila A. B. , Ahuome B. A. and Igba D.S.
Keywords: thermal conductivity, Boron nitride, dielectric, Debye Relaxation Model, polyimide composites
This study investigates the dielectric properties and thermal conductivity of boron nitride/polyimide (BN/PI) composites using the Debye relaxation model. Simulations were conducted using MATLAB to analyse the impact of varying BN content on the dielectric constant, dielectric loss, and thermal conductivity across a range of frequencies and temperatures. The results revealed a strong positive correlation between thermal conductivity and dielectric constant, with a Pearson correlation coefficient of 0.99221 at a frequency of 1 MHz. The thermal conductivity increased from 0.23092 W/m·K at a BN volume fraction of 0.05 to 0.58701 W/m·K at a volume fraction of 0.4, indicating that higher BN content significantly enhances heat dissipation capabilities. The dielectric constant showed a slight but consistent increase, rising from 3.5006 to 3.5046 over the same range. The findings highlight the potential of BN/PI composites for high-performance electronic applications, where efficient thermal management and dielectric stability are essential. These composites, with their exceptional thermal and dielectric properties, are particularly suited for applications in electronic substrates and thermal interface materials, where their tailored balance of properties ensures optimal performance.
| Ahmed, J., Seyhun, N., Ramaswamy, H. S., & Luciano, G. (2009). Dielectric properties of potato puree in microwave frequency range as influenced by concentration and temperature. International Journal of Food Properties, 12(4), 896-909. https://doi.org/10.1080/10942910802105460 |
||||
| Aungwa, F., Abubakar, A. B., Newton, G. F., Bichi, J. A., Denen, I. S., Adebayo, A. T., Myom, A. M., & Ikyumbur, T. J. (2025a). Simulation-based analysis of the breakdown strength of different dielectric materials: A comparative study of polymers, ceramics and composites. Nigerian Journal of Physics, 34(1), 139-148. https://doi.org/10.62292/njp.v34i1.2025.365 |
||||
| Aungwa, F., Ogunmoye, K., Solomon, I. D., Jubu, P. R., Oche, A. A., Danladi, E., Gesa, N. F., Adepoju, A. T., Adoyi, E. J. & Ochang, M. B. (2025b). Optical thickness of dielectric layer in solar cell design for improved efficiency: A theoretical insight. Physics Access, 5(1), 67-72. https://doi.org/10.47514/phyaccess.2025.5.1.007 |
||||
| Calay, R. K., Newborough, M., Probert, D., & Calay, P. S. (1994). Predictive equations for the dielectric properties of foods. International Journal of Food Science & Technology, 29(6), 699-713. https://doi.org/10.1111/j.1365-2621.1994.tb02111.x |
||||
| Feng, H., Tang, J., & Cavalieri, R. P. (2002). Dielectric properties of dehydrated apples as affected by moisture and temperature. Transactions of the ASAE, 45(1), 129-135. https://doi.org/10.13031/2013.7855 |
||||
| Franco, A. P., Tadini, C. C., & Wilhelms Gut, J. A. (2017). Predicting the dielectric behavior of orange and other citrus fruit juices at 915 and 2450 MHz. International Journal of Food Properties, 20(sup2), 1468-1488. https://doi.org/10.1080/10942912.2017.1347674 |
||||
| Franco, A. P., Yamamoto, L. Y., Tadini, C. C., & Gut, J. A. (2015). Dielectric properties of green coconut water relevant to microwave processing: Effect of temperature and field frequency. Journal of Food Engineering, 155, 69-78. https://doi.org/10.1016/j.jfoodeng.2015.01.011 |
||||
| Hasted, J. B., Aqueous dielectrics Series: Studies in Chemical Physics, Chapman and Hall Press, London, UK. | ||||
| Içier, F., & Baysal, T. (2004). Dielectrical properties of food materials-1: Factors affecting and industrial uses. Critical reviews in food science and nutrition, 44(6), 465-471. https://doi.org/10.1080/10408690490886692 |
||||
| Ikediala, J. N., Tang, J., Drake, S. R., & Neven, L. G. (2000). Dielectric properties of apple cultivars and codling moth larvae. Transactions of the ASAE, 43(5), 1175-1184. https://doi.org/10.13031/2013.3010 |
||||
| Kim, W. J., Park, S. H., & Kang, D. H. (2018). Inactivation of foodborne pathogens influenced by dielectric properties, relevant to sugar contents, in chili sauce by 915 MHz microwaves. LWT, 96, 111-118. https://doi.org/10.1016/j.lwt.2018.04.089 |
||||
| Kuang, W., & Nelson, S. O. (1997). Dielectric relaxation characteristics of fresh fruits and vegetables from 3 to 20 GHz. Journal of Microwave Power and Electromagnetic Energy, 32(2), 114-122. https://doi.org/10.1080/08327823.1997.11688332 |
||||
| Maxwell Garnett, J. C. (1906). VII. Colours in metal glasses, in metallic films, and in metallic solutions.-II. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 205(387-401), 237-288. https://doi.org/10.1098/rsta.1906.0007 |
||||
| Mendes-Oliveira, G., Deering, A. J., San Martin-Gonzalez, M. F., & Campanella, O. H. (2020). Microwave pasteurization of apple juice: Modeling the inactivation of Escherichia coli O157: H7 and Salmonella Typhimurium at 80-90 C. Food Microbiology, 87, 103382. https://doi.org/10.1016/j.fm.2019.103382 |
||||
| Nelson, S. O. (2005, July). Dielectric spectroscopy studies on fresh fruits and vegetables. In 2005 IEEE Antennas and Propagation Society International Symposium (Vol. 4, pp. 455-458). IEEE. https://doi.org/10.1109/APS.2005.1552849 |
||||
| Nelson, S. O., & Bartley, P. G. (2002). Measuring frequency-and temperature-dependent permittivities of food materials. IEEE Transactions on Instrumentation and Measurement, 51(4), 589-592. https://doi.org/10.1109/TIM.2002.802244 |
||||
| Ravika, V., & Sharma, K. S. (2023). Investigation of Dielectric Properties of Potato, Tomato and Onion Juices at Microwave Frequencies. Journal of Environmental Nanotechnology, 12(4), 52-59. https://doi.org/10.13074/jent.2023.12.234483 |
||||
| Regier, M., & Schubert, H. (2005). Introducing microwave processing of food: principles and technologies. The Microwave Processing of Foods, 3-21. https://doi.org/10.1533/9781845690212.1.3 |
||||
| Singh, S. P. (2018). An analysis of dielectric parameters and penetration depth of tomato sauces. Journal of Food Processing & Technology, 9(07), 7-10. https://doi.org/10.4172/2157-7110.1000742 |
||||
| Sosa-Morales, M. E., Valerio-Junco, L., López-Malo, A., & García, H. S. (2010). Dielectric properties of foods: Reported data in the 21st Century and their potential applications. LWT-Food Science and Technology, 43(8), 1169-1179. https://doi.org/10.1016/j.lwt.2010.03.017 |
||||
| Vijay, R., Jain, R., & Sharma, K. S. (2015). Dielectric spectroscopy of grape juice at microwave frequencies. International Agrophysics, 29(2), 239-246. https://doi.org/10.1515/intag-2015-0025 |
||||
| Wang, Y., Wig, T. D., Tang, J., & Hallberg, L. M. (2003). Dielectric properties of foods relevant to RF and microwave pasteurization and sterilization. Journal of Food Engineering, 57(3), 257-268. https://doi.org/10.1016/S0260-8774(02)00306-0 |
||||
| Zhu, X., Guo, W., & Jia, Y. (2014). Temperature-dependent dielectric properties of raw cow's and goat's milk from 10 to 4,500 MHz relevant to radio-frequency and microwave pasteurization process. Food and Bioprocess Technology, 7(6), 1830-1839. https://doi.org/10.1007/s11947-014-1255-4 |
||||
| Zhu, X., Guo, W., & Wu, X. (2012). Frequency-and temperature-dependent dielectric properties of fruit juices associated with pasteurization by dielectric heating. Journal of Food Engineering, 109(2), 258-266. https://doi.org/10.1016/j.jfoodeng.2011.10.005 |
||||