ISSN: 2756-6684
Model: Open Access/Peer Reviewed
DOI: 10.31248/AJPS
Start Year: 2018
Email: ajps@integrityresjournals.org
https://doi.org/10.31248/AJPS2025.120 | Article Number: AB19CDD11 | Vol.6 (4) - August 2025
Received Date: 13 May 2025 | Accepted Date: 04 July 2025 | Published Date: 30 August 2025
Authors: Samson Osinachi NWADIBIA , Alalibo Thompson NGIANGIA and Hilary Patrick OBONG
Keywords: nanofluid, Iron (II) Oxide nanoparticle, water-based fluid, rectangular system, MHD.
The study of magnetohydrodynamics (MHD) nanofluid flow in a rectangular channel is presented using a numerical approach based on a mathematical model developed by combining the models of thermal conductivities and effective viscosity in addition to electroconductivity term and the approximation for the radiative heat flux vector for an optically thin medium at low density, was also deployed in the formalism. The resulting sets of partial differential equations were nondimensionalized based on the Buckingham-π using pertinent hydrodynamic variables, the coupled equations were solved using the Laplace Transform Technique for temperature, concentration and velocity. Graphical results presented show that the concentration, temperature are enhanced while the velocity diminishes as the nanoparticle volume fraction increases. The velocity increases alongside temperature as the parameter of the radiation term increases. The velocity field decreases along the axis and further decrease further as electroconductivity of the nanofluid increase. Furthermore, the velocity of the nanofluid decreases along the axis for all values of the Hartmann number. Implication of finding of the study is that the velocity of electrically conducting fluid is dampen as the conductivity and magnetic field intensity increase.
| Abareshi, M., Sajjadi, S. H., Zebarjad, S. M., & Goharshadi, E. K. (2011). Fabrication, characterization, and measurement of viscosity of α-Fe₂O₃-glycerol nanofluids, Journal of Molecular Liquids, 163(1), 27-32. https://doi.org/10.1016/j.molliq.2011.07.007 |
||||
| Akbarinia, A. (2008). Impacts of nanofluid flow on skin friction factor and Nusselt number in curved tubes with constant mass flow, International Journal of Heat and Fluid Flow, 29(1), 229-241. https://doi.org/10.1016/j.ijheatfluidflow.2007.05.003 |
||||
| Aminuddin, N. A., Nasir, N. A. A. M., Jamshed, W., Ishak, A., Pop, I., & Eid, M. R. (2023). Impact of thermal radiation on MHD GO-Fe₂O₄/EG flow and heat transfer over a moving surface, Symmetry, 15(3), 584. https://doi.org/10.3390/sym15030584 |
||||
| Batool, S., Rasool, G., Alshammari, N., Khan, I., Kaneez, H., & Hamadneh, N. (2022). Numerical analysis of heat and mass transfer in micropolar nanofluids flow through lid driven cavity: Finite volume approach, Case Studies in Thermal Engineering, 37, 102233. https://doi.org/10.1016/j.csite.2022.102233 |
||||
| Bhandari, A. (2023). Analysis of water conveying iron (III) oxide nanoparticles subject to a stationary magnetic field and alternating magnetic field, Journal of Dispersion Science and Technology, 44(1), 204-213. https://doi.org/10.1080/01932691.2021.1931293 |
||||
| Bhattacharya, P. S. S. K., Saha, S. K., Yadav, A., Phelan, P. E., & Prasher, R. S. (2004). Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids, Journal of Applied Physics, 95(11), 6492-6494. https://doi.org/10.1063/1.1736319 |
||||
| Boričić, Z., Nikodijević, D., Milenković, D., & Stamenković, Ž. (2005). A form of MHD universal equations of unsteady incompressible fluid flow with variable electroconductivity on heated moving plate. Theoretical and Applied Mechanics, 32(1), 65-77. https://doi.org/10.2298/TAM0501065B |
||||
| Cogley, A. C., Vincenti, W. G., & Gilles, S. E. (1968). Differential approximation for radiative heat transfer in a non-gray gas near equilibrium, AIAA Journal, 6(3), 551-553. https://doi.org/10.2514/3.4538 |
||||
| Das, S. K., Choi, S. U. S., Yu, W., & Pradeep, T. (2007). Nanofluids: Science and Technology. Hoboken, NJ: John Wiley & Sons. https://doi.org/10.1002/9780470180693 |
||||
| De Bruijn, H. (1942). The viscosity of suspensions of spherical particles. (The fundamental η‐c and φ relations). Recueil des Travaux Chimiques des Pays‐Bas, 61(12), 863-874. https://doi.org/10.1002/recl.19420611205 |
||||
| Dogonchi, A.S., Alizadeh, M., & Ganji, D. D. (2017). Investigation of MHD Go-water nanofluid flow and heat transfer in a porous channel in the presence of thermal radiation effect, Advanced Powder Technology, 28(7), 1815-1825. https://doi.org/10.1016/j.apt.2017.04.022 |
||||
| Ebaid, M. S., Ghrair, A. M., & Al-busoul, M. (2022). Investigation of heat transfer enhancement using ferro-nanofluids (Fe₃O₄/water) in a heated pipe under the application of magnetic field, Advances in Mechanical Engineering, 14(6). https://doi.org/10.1177/16878132221102647 |
||||
| Farooq, U., Hassan, A., Fatima, N., Imran, M., Alqurashi, M. S., Noreen, S., & Bariq, A. (2023). A computational fluid dynamics analysis on Fe₃O₄-H₂O based nanofluid axisymmetric flow over a rotating disk with heat transfer enhancement, Scientific Reports, 13(1), 4679. https://doi.org/10.1038/s41598-023-31734-1 |
||||
| Farooq, U., Imran, M., Waqas, H., Alhushaybari, A., Alharthi, A. M., & Noreen, S. (2024). Computational Modeling of Thermal Radiation in Bioconvectional Flow Through Burger Nanofluid with Cattaneo-Christov Heat and Mass Flux Along an Inclined Surface. Journal of Nanofluids, 13(1), 189-198. https://doi.org/10.1166/jon.2024.2142 |
||||
| Gupta, R., Albidah, A. B., Noor, N. F. M., & Khan, I. (2025). Application of DTM to heat source/sink in squeezing flow of iron oxide polymer nanofluid between electromagnetic surfaces, Case Studies in Thermal Engineering, 66, 105735. https://doi.org/10.1016/j.csite.2024.105735 |
||||
| Hady, F. M., Ibrahim, F. S., Abdel-Gaied, S. M., & Eid, M. R. (2012). Radiation effect on viscous flow of a nanofluid and heat transfer over a nonlinearly stretching sheet. Nanoscale Research Letters, 7, 1-13. https://doi.org/10.1186/1556-276X-7-229 |
||||
| Hamid, M., Usman, M., Zubair, T., Haq, R. U., & Wang, W. (2018). Shape effects of MoS₂ nanoparticles on rotating flow of nanofluid along a stretching surface with variable thermal conductivity: A Galerkin approach, International Journal of Heat and Mass Transfer, 124, 706-714. https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.108 |
||||
| Hassan, M. (2018). Impact of iron oxide particles concentration under a highly oscillating magnetic field on ferrofluid flow. The European Physical Journal Plus, 133(6), 230 https://doi.org/10.1140/epjp/i2018-12045-7 |
||||
| Hayat, T., Ullah, H., Ahmad, B. and Alhodaly, M.S. (2021) Heat transfer analysis in convective flow of Jeffrey nanofluid by vertical stretchable cylinder, International Communications in Heat and Mass Transfer, 120, p. 104965. https://doi.org/10.1016/j.icheatmasstransfer.2020.104965 |
||||
| Hosseinzadeh, K., Afsharpanah, F., Zamani, S., Gholinia, M., & Ganji, D. D. (2018). A numerical investigation on ethylene glycol-titanium dioxide nanofluid convective flow over a stretching sheet in presence of heat generation/ absorp-tion. Case Studies in Thermal Engineering, 12, 228-236. https://doi.org/10.1016/j.csite.2018.04.008 |
||||
| Hsiao, K. L. (2017). Micropolar nanofluid flow with MHD and viscous dissipation effects towards a stretching sheet with multimedia feature, International Journal of Heat and Mass Transfer, 112, 983-990. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.042 |
||||
| Jalili, B., Alamdari, S. G., Jalili, P., & Gani, D. D. (2023) Analysis of bio-nanofluid flow over a stretching sheet with slip boundaries, Results in Physics, 54, 107083. https://doi.org/10.1016/j.rinp.2023.107083 |
||||
| Khalid, A., Khan, I., & Shafie, S. (2015). Exact solutions for free convection flow of nanofluids with ramped wall temperature. The European Physical Journal Plus, 130(4), 57. https://doi.org/10.1140/epjp/i2015-15057-9 |
||||
| Kaneez, H., Baqar, A., Andleeb, I., Hafeez, M. B., Krawczuk, M., Jamshed, W., & Abd-Elmonem, A. (2023) Thermal analysis of magnetohydrodynamics (MHD) Casson fluid with suspended iron (II, III) oxide-aluminum oxide-titanium dioxide ternary-hybrid nanostructures, Journal of Magnetism and Magnetic Materials, 586, 171223. https://doi.org/10.1016/j.jmmm.2023.171223 |
||||
| Kataria, H. R., & Mittal, A. S. (2015) Mathematical model for velocity and temperature of gravity-driven convective optically thick nanofluid flow past an oscillating vertical plate in presence of magnetic field and radiation, Journal of the Nigerian Mathematical Society, 34(3), 303-317. https://doi.org/10.1016/j.jnnms.2015.08.005 |
||||
| Kataria, H. R., & Mittal, A. S. (2017) Velocity, mass and temperature analysis of gravity-driven convection nanofluid flow past an oscillating vertical plate in the presence of magnetic field in a porous medium, Applied Thermal Engineering, 110, 864-874. https://doi.org/10.1016/j.applthermaleng.2016.08.129 |
||||
| Khalid, A., Khan, I., & Shafie, S. (2015). Exact solutions for free convection flow of nanofluids with ramped wall temperature. The European Physical Journal Plus, 130,1-14. https://doi.org/10.1140/epjp/i2015-15057-9 |
||||
| Khan, M. I., Kadry, S., Chu, Y., & Waqas, M. (2021). Modeling and numerical analysis of nanoliquid (titanium oxide, graphene oxide) flow viscous fluid with second order velocity slip and entropy generation, Chinese Journal of Chemical Engineering, https://doi.org/10.1016/j.cjche.2020.08.005 |
||||
| 31, 17-25. | ||||
| Khan, M. S., Mei, S., Shabnam, Fernandez-Gamiz, U., Noeiaghdam, S., Shah, S. A., & Khan, A. (2022). Numerical analysis of unsteady hybrid nanofluid flow comprising CNTs-ferrousoxide/water with variable magnetic field, Nanomaterials, 12(2), 180. https://doi.org/10.3390/nano12020180 |
||||
| Koriko, O. K., Adegbie, K. S., Animasaun, I. L., & Ijirimoye, A. F. (2020) Comparative analysis between three-dimensional flow of water conveying alumina nanoparticles and water conveying alumina-iron (III) oxide nanoparticles in the presence of Lorentz force, Arabian Journal for Science and Engineering, 45, 455-464. https://doi.org/10.1007/s13369-019-04223-9 |
||||
| Krishna, M. V., Ahammad, N. A., & Chamkha, A. J. (2021). Radiative MHD flow of Casson hybrid nanofluid over an infinite exponentially accelerated vertical porous surface. Case Studies in Thermal Engineering, 27, 101229. https://doi.org/10.1016/j.csite.2021.101229 |
||||
| Kumar, D. H., Patel, H. E., Kumar, V. R., Sundararajan, T., Pradeep, T., & Das, S.K. (2004) Model for heat conduction in nanofluids, Physical Review Letters, 93(14), 144301. https://doi.org/10.1103/PhysRevLett.93.144301 |
||||
| Madhukesh, J. K., Ramesh, G. K., Chavaraddi, K. B., Aly, E. H., Almutairi, B., & Shah, N. A. (2023) Impact of active and passive control of nanoparticles in ternary nanofluids across a rotating sphere, Results in Physics, 54, 107069. https://doi.org/10.1016/j.rinp.2023.107069 |
||||
| Mahian, O., Kianifar, A., Kalogirou, S. A., Pop, I., & Wongwises, S. (2013) A review of the applications of nanofluids in solar energy, International Journal of Heat and Mass Transfer, 57(2), 582-594. https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.037 |
||||
| Mostafazadeh, A., Toghraie, D., Mashayekhi, R., & Akbari, O. A. (2019) Effect of radiation on laminar natural convection of nanofluid in a vertical channel with single- and two-phase approaches. Journal of Thermal Analysis and Calorimetry, 138(1), 779-794. https://doi.org/10.1007/s10973-019-08236-2 |
||||
| Muritala, A. O., Adio, S. A., Luqman, O., Adebayo, O. S., Akinlolu, I. J., & Obayopo, S.O. (2022) Experimental study on effect of magnetic field on flow dynamics of iron (III) oxide (Fe₂O₃) water based nanofluid using Taylor Couette flow apparatus. Nigerian Journal of Technology, 41(3), 454-463. https://doi.org/10.4314/njt.v41i3.5 |
||||
| Ngiangia, A. T., & Jim-George, F. L. (2019). Effect of electro-thermal conductivity on MHD free convection flow in an inclined porous channel. Journal of Information and Optimization Sciences, 40(6), 1265-1279. https://doi.org/10.1080/02522667.2018.1488412 |
||||
| Ngiangia, A. T., & Nwabuzor, P. O. (2019). Electro conductivity of generalized MHD Burgers fluid flow due to a sinusoidal accelerating plate. Science & Technology, 5, 195-204. | ||||
| Ngiangia, A. T., & Okechukwu, A. (2016) Influence of variable electroconductivity and radiation on MHD Couette flow. World Scientific News, 2(47), 241-253. | ||||
| Nield, D. A., & Bejan, A. (2006) Convection in Porous Media. 3rd edition. New York: Springer. | ||||
| Ojjela, O. (2022) Numerical investigation of heat transport in Alumina-Silica hybrid nanofluid flow with modeling and simulation. Mathematics and Computers in Simulation, 193, 100-122. https://doi.org/10.1016/j.matcom.2021.09.022 |
||||
| Rammoorthi, R., & Mohanavel, D. (2023) Influence of radiative magnetic field on a convective flow of a chemically reactive hybrid nanofluid over a vertical plate. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 105(1), 90-106. https://doi.org/10.37934/arfmts.105.1.90106 |
||||
| Rout, B. C., & Mishra, S. R., (2019). An analytical approach to the metal and metallic oxide properties of Cu-water and TiO 2-water nanofluids over a moving vertical plate. Pramana, 93(3), 41. https://doi.org/10.1007/s12043-019-1797-0 |
||||
| Sadeghi, S. S., Hadi, A., & Mashhadi, M. M. (2023). Viscosity of Fe₂O₃-water nanofluids by molecular dynamics simulations: Effects of nanoparticle content, temperature and size. Journal of Molecular Liquids, 382, 121859. https://doi.org/10.1016/j.molliq.2023.121859 |
||||
| Shima, P. D., Philip, J., & Raj, B. (2010) Synthesis of aqueous and nonaqueous iron oxide nanofluids and study of temperature dependence on thermal conductivity and viscosity. The Journal of Physical Chemistry C, 114(44), 18825-18833. https://doi.org/10.1021/jp107447q |
||||
| Singh, K., Rawat, S. K., & Kumar, M. (2016) Heat and mass transfer on squeezing unsteady MHD nanofluid flow between parallel plates with slip velocity effect. Journal of Nanoscience, Volume 2016, Article ID 9708562, 11 pages. https://doi.org/10.1155/2016/9708562 |
||||
| Tiwari, R. K., & Das, M. K. (2007) Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. International Journal of Heat and Mass Transfer, 50(9-10), 2002-2018. https://doi.org/10.1016/j.ijheatmasstransfer.2006.09.034 |
||||
| Vand, V. (1948) Viscosity of solutions and suspensions. I. Theory. Journal of Physical and Colloid Chemistry, 52(2), 277-299. https://doi.org/10.1021/j150458a001 |
||||
| Yahya, N., Kashif, M., Shafie, A., Soleimani, H., Zaid, H. M., & Latiff, N. R. A. (2014). Improved oil recovery by high magnetic flux density subjected to iron oxide nanofluids. Journal of Nano Research, 26, 89-99. https://doi.org/10.4028/www.scientific.net/JNanoR.26.89 |
||||