ISSN: 2756-6684
Model: Open Access/Peer Reviewed
DOI: 10.31248/AJPS
Start Year: 2018
Email: ajps@integrityresjournals.org
https://doi.org/10.31248/AJPS2025.132 | Article Number: 8AEA03033 | Vol.6 (5) - December 2025
Received Date: 03 October 2025 | Accepted Date: 18 November 2025 | Published Date: 30 December 2025
Authors: Kabir M. Tafida* , Aisha Y. Abdullahi and Muhammed Yahuza
Keywords: Homotopy perturbation method, induced magnetic field, natural convection, variable viscosity, variable thermal conductivity.
This study investigates steady magnetohydrodynamic (MHD) natural convection Couette flow in a vertical channel, incorporating temperature-dependent fluid properties, namely viscosity and thermal conductivity, to more accurately represent realistic flow behaviour. The analysis accounts for the induced magnetic field by the motion of the conducting fluid, and the governing momentum, energy, and magnetic induction equations are solved using the Homotopy Perturbation Method. Results show that decreasing viscosity with increasing temperature enhances fluid motion, whereas higher thermal conductivity improves heat distribution but may reduce flow acceleration. An increase in the Hartmann number suppresses fluid velocity due to stronger magnetic damping, while higher magnetic Prandtl numbers amplify the induced magnetic field. Additionally, reduced viscosity increases skin friction on the moving plate while decreasing it on the stationary plate. These findings offer valuable insights for a wide range of engineering and industrial applications, including cooling of electronic devices and nuclear reactors, MHD power generation, metallurgical process control, and thermal management in aerospace systems. They are also relevant to biomedical devices utilizing magnetic field-assisted fluid control, geothermal energy extraction, and advanced chemical reactors, where efficient heat and mass transfer under magnetic fields can improve overall performance and product quality.
| Abdul-Ameer, A. Y., & Abdul-Sattar J. A. A. (2023). Fourier-homotopy perturbation method for heat and mass transfer with 2D unsteady squeezing viscous flow problem. Journal of Computational Applied Mechanics, 54(2), 219-235. | ||||
| Adnan, K. F., & Osama. H. M. (2023). Homotopy perturbation method for solving time-fractional nonlinear variable-order delay partial differential equations. Partial Differential Equations in Applied Mathematics, 7, 100513. https://doi.org/10.1016/j.padiff.2023.100513 |
||||
| Ajibade, A. O., & Bolaji, A. S. (2020). Steady natural convection MHD flow in a vertical channel with induced magnetic field and variable fluid properties. The Journal of the Mathematical Association of Nigeria, 47(1), 176- 192. | ||||
| Ajibade, A. O., & Ojeagbase, P. O. (2019). Effects of variable viscosity and thermal conductivity on free convection heat and mass transfer flow through a vertical channel. J Appl Computat Math, 8(441), 2-7. https://doi.org/10.1002/eng2.12268 |
||||
| Ajibade, A. O., & Tafida, M. K. (2020). The combined effect of variable viscosity and variable thermal conductivity on natural convection couette flow. International Journal of Thermofluids, 5, 100036. https://doi.org/10.1016/j.ijft.2020.100036 |
||||
| Ajibade, A. O., & Umar, A. M. (2020). Mixed convection flow in a vertical channel in the presence of wall conduction, variable thermal conductivity and viscosity. Nonlinear Engineering, 9(1), 412-431. https://doi.org/10.1515/nleng-2020-0026 |
||||
| Bichi, Y. A., & Ajibade, A. O. (2020). Combined effects of variable viscosity, viscous dissipation and thermal radiation on unsteady natural convection couette flow through a vertical porous channel. FUDMA Journal of Sciences, 4(2), 135-150. https://doi.org/10.33003/fjs-2020-0402-208 |
||||
| Borgohain, D. (2023). Impacts of temperature dependent thermal conductivity and viscosity on slipped flow of Maxwell nanofluid. East European Journal of Physics, 4, 120-128. https://doi.org/10.26565/2312-4334-2023-4-12 |
||||
| Das, U. J., & Patgiri, I. (2024a). Influences of variable viscosity and variable thermal conductivity on a mixed convective hydromagnetic flow in a vertical channel with thermophoretic deposition. Journal of Engineering Physics and Thermophysics, 97, 733-744. https://doi.org/10.1007/s10891-024-02945-8 |
||||
| Das, U. J., & Patgiri, I. (2024b). Entropy analysis on Thermophoretic magnetohydrodynamic couette flow over a deformable porous channel with temperature-dependent viscosity and thermal conductivity, 53(5), 2556-2571. https://doi.org/10.1002/htj.23053 |
||||
| Erinle-Ibrahim, L. M., Babajide, Idowu, A. O., & Oluwatobi, I. K. (2021). Application of Homotopy perturbation method to the mathematical Modelling of temperature rise during microwave hyperthermia. FUDMA Journal of Sciences, 5(2), 273-282. https://doi.org/10.33003/fjs-2021-0502-645 |
||||
| Farhood, A. K., & Mohammed, O. H. (2023). Homotopy Perturbation Method for solving time-fractional nonlinear variable-order delay partial differential equations. Partial Differential Equations in Applied Mathematics, 7, 100513. https://doi.org/10.1016/j.padiff.2023.100513 |
||||
| Gouder, P.M., Kolli, V.H., Hanif, M. D., Krishna B. C., & Praveen, C. (2022). The homotopy perturbation method to solve a wave equation. Communications in Mathematics and Applications, 13(2), 691-701. https://doi.org/10.26713/cma.v13i2.1764 |
||||
| Hamza, M. M., Ejiwole, O. J., Usman, H., Almu, A., Hamisu, A., & Musa, M. (2024b). Effect of variable thermal conductivity on oscillatory magnetized couette flow in a channel filled with porous material. UMYU Scientifica, 3(4), 218-231. https://doi.org/10.56919/usci.2434.017 |
||||
| Hamza, M. M., Suleiman, B. A. Ahmad, S K., & Ahmad, R. T. (2024a). Nonlinear-mixed convection flow with variable thermal conductivity impacted by asymmetric/symmetric heating/cooling conditions. Arabian Journal for Science and Engineering, 49, 14763-14772. https://doi.org/10.1007/s13369-024-08757-5 |
||||
| Hazarika, G. C., & Konch, J. (2016). Effect of variable viscosity and thermal conductivity on magnetohydrodynamic free convection dusty fluid along a vertical porous plate with heat generation. Turkish Journal of Physics, 40, 52-68. https://doi.org/10.3906/fiz-1509-14 |
||||
| Jha, B. K., & Aina, B. (2017). Impact of induced magnetic field on MHD mixed convection flow in vertical microchannel formed by non-conducting and conducting infinite vertical parallel plates. Journal of Nanofluids, 6, 960-970. https://doi.org/10.1166/jon.2017.1376 |
||||
| Jha, B. K., & Malgwi, P. B. (2022). Hydromagnetic free convection flow in a vertical microporous channel with Hall current and ion-slip effect. Journal of the Egyptian Mathematical Society, 30(1), 21. https://doi.org/10.1186/s42787-022-00155-w |
||||
| Jyothi, K., Venkateswarlu, B., Reddy, P. C., Kodi, R., & Annapureddy, D. R. (2025). Neural network-driven analysis of MHD boundary layer flow and heat transfer in Sisko nanofluids. Multiscale and Multidisciplinary Modelling, Experiments and Design, 8(6), 291. https://doi.org/10.1007/s41939-025-00877-1 |
||||
| Kaita, I. H., Zayyanu, S. Y., Mas'ud, L., Hamsiu, A., Abdullahi, U., & Auwal, D. M. (2024). Heat and mass transfer flow in a channel filled with porous medium in the presence of variable thermal conductivity. FUDMA Journal of Sciences, 8(2), 225-234. https://doi.org/10.33003/fjs-2024-0802-2236 |
||||
| Kalyan, S., Kandagal, M., Tawade, J. V., Satpute, N., Khan, M. I., Kulkarni, N., ... & Gupta, M. (2025). Exploring Mixed Convection in Porous Media: Thermal and Flow Behaviour. Partial Differential Equations in Applied Mathematics, 15, 101239. https://doi.org/10.1016/j.padiff.2025.101239 |
||||
| Kandagal, M., & Kempepatil, R. (2024). An investigation of the heat and mass transfer effects in vertical channels with immersible fluid flow through a porous matrix. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 104(10), e202300998. https://doi.org/10.1002/zamm.202300998 |
||||
| Kandagal, M., Kempepatil, R., Tawade, J. V., Nazarova, N., Gupta, M., & Khan, M. (2025). The impact of carbon nanotubes (CNT) on heat generation and absorption, the behaviour of water and blood suspensions in an inclined channel with a porous matrix. Partial Differential Equations in Applied Mathematics, 15, 101241. https://doi.org/10.1016/j.padiff.2025.101241 |
||||
| Khaleghizadeh, S. (2022). Homotopy perturbation method with the help of Adomian decomposition method for nonlinear problems. Mathematical Analysis and its Contemporary Applications, 4(1); 45-51. | ||||
| Konduru, V. R., Narahari, R. B., Poli, C. R., Battala, V. S., Ravuri, M. R., Dandu, S., & Balaraju, M. R. A. MHD flow and heat transfer of carreau fluid with radiation and heat source effect. Journal of Advanced Research in Numerical Heat Transfer, 26(1), 141-155. https://doi.org/10.37934/arnht.26.1.142155 |
||||
| Kumar, K. T., Kalyan, S., Kandagal, M., Tawade, J. V., Khan, U., Eldin, S. M., ... & Abed, A. M. (2023). Influence of heat generation/absorption on mixed convection flow field with porous matrix in a vertical channel. Case Studies in Thermal Engineering, 47, 103049. https://doi.org/10.1016/j.csite.2023.103049 |
||||
| Meruva, P., Reddy, P. C., Roja, P., & Leela, R. A. (2022). Characteristics of MHD three-dimensional flow of nanofluid over a permeable stretching sheet. Heat Transfer, 51, 3586-3599. https://doi.org/10.1002/htj.22465 |
||||
| Mottupalle, G. R., Ashwathnarayana, D. P., Shankarappa, B. M., & Sanjeevamurthy, A. A. (2022). Effects of variable fluid properties on double diffusive mixed convection with chemical reaction over an accelerating surface. Biointerface Research in Applied Chemistry, 12(4), 5161-5173. https://doi.org/10.33263/BRIAC124.51615173 |
||||
| Omokhuale, E., & Ojemeri, G. (2024). Couette Flow in the presence of viscous dissipative fluid along an upstanding channel affected by newtonian heating: Homotopy perturbation approach. Journal of Basic Physical Research, 12(1), 1 - 12. | ||||
| Reddy, P. C., Umamheswar, M., Reddy, S. H., Raju, A. M., & Raju, M. C. (2022). Numerical study on the parabolic flow of MHD fluid past a vertical plate in a porous medium. Heat Transfer, 51(4), 3418-3430. https://doi.org/10.1002/htj.22457 |
||||
| Saini, G., Hanumagowda, B. N., Varma, S. V. K., Chohan, J. S., Shah, N. A., & Jeon, Y. (2023). Impact of couple stress and variable viscosity on heat transfer and flow between two parallel plates in conducting field. AIMS Mathematics, 8(7), 16773-16789. https://doi.org/10.3934/math.2023858 |
||||
| Saravanakumar, S., Eswari, A., Makinde, O. D., Anbazhagan, N., Joshi, G. P., & Cho, W. (2023). Analysis of temperature-dependent thermal conductivity and fin efficiency: Direct Akbari-Ganji method. Case Studies in Thermal Engineering, 51, 103627. https://doi.org/10.1016/j.csite.2023.103627 |
||||
| Sharahy, A., & Sawlan, Z. (2023). Estimation of Temperature-Dependent Thermal Conductivity and Heat Capacity Given Boundary Data. Computation, 11(9), 184. https://doi.org/10.3390/computation11090184 |
||||
| Singh, V., & Argawal, S. (2013). Flow and heat transfer of maxwell fluid with variable viscosity and thermal conductivity over an exponentially stretching sheet. American Journal of Fluid Dynamics, 3(4), 87-95. | ||||
| Sobamowo, M. G. (2023). Direct applications of homotopy perturbation method for solving nonlinear algebraic and transcendental equations. International Journal of Petrochemical Science and Engineering, 6(1), 10-22. https://doi.org/10.15406/ipcse.2023.06.00127 |
||||
| Tafida, M. K. Abdullahi, A. Y., & Auwal, N. (2025). Magnetohydrodynamics Effects on Steady Natural Convection Couette Flow of Heat Generating/Absorbing Fluid in a Vertical Channel with Viscous Dissipation. FUDMA Journal of Sciences, 9(6), 375-383. https://doi.org/10.33003/fjs-2025-0906-3730 |
||||
| Tafida, M. K., & Ajibade, A. O. (2019). Effect of variable viscosity on natural convection flow between vertical parallel plates in the presence of heat generation/absorption. Asian Research Journal of Mathematics, 14(3), 10-15. | ||||
| Tafida, M. K., & Tajuddeen, A. (2024). Homotopy perturbation method for analysing the effect of viscous dissipation on steady natural convection Couette flow with convective boundary conditions. International Journal of Fluid Mechanics and Thermal Sciences, 10(3), 45-56. https://doi.org/10.11648/j.ijfmts.20241003.11 |
||||
| Tafida, M. K., Ajibade, A. O., & Lawal, U. (2021). Effects of Variable Viscosity and Thermal Conductivity on Steady Natural Convection Couette Flow Having Suction/Injection. Transactions of the Nigerian Association of Mathematical Physics, 15(April -June, Issue), 139-150. | ||||
| Tafida, M. K., Ajibade, A. O., & Usman, M. H. (2020). Effects of variable viscosity and viscous dissipation on free convective couette flow in a vertical channel: The homotopy perturbation method approach. Abacus (Mathematics Science Series), 47(1), 161 -175. | ||||
| Umamaheswar, M., Reddy, P. C., Reddy, S. H., Mopuri, O., & Ganteda, C. K. (2022). Aspects of parabolic motion of MHD fluid flow past a vertical porous plate with cross‐diffusion effects. Heat Transfer, 51(5), 4451-4465. https://doi.org/10.1002/htj.22507 |
||||