ISSN: 2756-6684
Model: Open Access/Peer Reviewed
DOI: 10.31248/AJPS
Start Year: 2018
Email: ajps@integrityresjournals.org
https://doi.org/10.31248/AJPS2025.126 | Article Number: 7C4C46022 | Vol.6 (5) - December 2025
Received Date: 28 May 2025 | Accepted Date: 08 August 2025 | Published Date: 30 December 2025
Authors: Ehwarieme Favour Omoyoma* , Akintola Sarah Abidemi and Jamela Belinda-Fay
Keywords: Environmental sustainability, Biodegradable drilling fluids, biopolymers, modified starches, oil-based muds, rheological performance, water-based drilling fluids.
Drilling Fluids are critical to oil and gas exploration, with conventional formulations, particularly Oil-Based Mud (OBMs), posing significant environmental challenges due to their toxicity and non-biodegradable nature. This research explores the development and application of biodegradable Drilling Fluids as sustainable alternatives, focusing on current innovations and future directions. Biodegradable fluids, derived from renewable resources such as natural oils (e.g., coconut, jojoba) and biopolymers (e.g. starch, cellulose derivatives), offer comparable rheological performance to traditional fluids while minimising ecological impacts. Recent advancements include modified starches, cellulose nanocrystals and waste-derived additives like agricultural waste, which enhance fluid properties and align with circular economy principles. Case studies from regions such as the Tarim oilfields, Vietnam, and the Permian Basin demonstrate the practical efficacy of these fluids, with benefits including reduced emissions, cost savings, and improved reservoir protection. However, challenges such as material compatibility, scalability, and cost persist; continued research and collaboration between academia and industry are essential to overcome these barriers and realise the full potential of biodegradable drilling fluids.
| Abdullah, A. H., Ridha, S., Mohshim, D. F., & Maoinser, M. A. (2024). An experimental investigation into the rheological behavior and filtration loss properties of water-based drilling fluid enhanced with a polyethyleneimine-grafted graphene oxide nanocomposite. RSC advances, 14(15), 10431-10444. https://doi.org/10.1039/D3RA07874D |
||||
| Aftab, A., Ali, M., Ali, M., Sahito, M. F., Mohanty, U. S., Jha, N. K., Akhondzadeh, H., Azhar, M. R., Azhar, M. R., Ismail, A. R., Keshavarz, A., Iglauer, S., & Iglauer, S. (2020). Environmental friendliness and high performance of multifunctional tween 80/ZnO-nanoparticles-added water-based drilling fluid: An Experimental Approach. ACS Sustainable Chemistry & Engineering, 8(30), 11224-11243. https://doi.org/10.1021/acssuschemeng.0c02661 |
||||
| Agnihotri, M., Bhan, U., Nagalakshmi, V. R., Thakur, N. K., Ganguly, S., Kushwaha, A., & Goswami, L. (2023). Environmental Impact of Drilling Fluid Waste and Its Mitigation Techniques (pp. 101-112). Springer International Publishing. https://doi.org/10.1007/978-981-99-2870-5_13 |
||||
| Ahsan, M. (2024). Fluid materials: An ISO14000 analysis focusing on material impact. International Journal of Science and Research Archive, 13(2), 3940-3943. https://doi.org/10.30574/ijsra.2024.13.2.2663 |
||||
| Ahsan, M., & Gobe, A. (2024). Drilling towards decarbonization: Sustainable fluid solution for Vietnam. International Journal of Science and Research Archive, 13(1), 890-893. https://doi.org/10.30574/ijsra.2024.13.1.1505 |
||||
| Akintola, S. A., Ehwarieme, F., & Amaechi, I. (2024). Advancing Sustainability of Drilling Fluid: Coconut and Shea Butter Oils as Alternative to Diesel. Current Journal of Applied Science and Technology, 43(12), 44-61. https://doi.org/10.9734/cjast/2024/v43i124458 |
||||
| Akintola, S. A., Ehwarieme, F., & Ameachi, I. (2024). Advancing sustainability of drilling fluid: coconut and shea butter oils as alternative to diesel. Current Journal of Applied Science and Technology, 43(12), 44-61. https://doi.org/10.9734/cjast/2024/v43i124458 |
||||
| Akpan, E. U. (2019). Water-based drilling fluids for high temperature and dispersible shale formation applications. University of Salford (United Kingdom). Retrieved from https://usir.salford.ac.uk/id/eprint/52807/?template=banner | ||||
| Akpan, E., Enyi, G., & Nasr, G. G. (2020). Enhancing the performance of xanthan gum in water-based mud systems using an environmentally friendly biopolymer. Journal of Petroleum Exploration and Production Technology, 10(5), 1933-1948. https://doi.org/10.1007/s13202-020-00837-0 |
||||
| Al Ruqeishi, M. S., Al Salmi, Y., & Mohiuddin, T. (2018). Nanoparticles as drilling fluids rheological properties Modifiers. 1(5), 1-7. https://doi.org/10.31031/PPS.2018.01.000521 |
||||
| Al-Hameedi, A. T. T., Alkinani, H. H., Alkhamis, M. M., & Dunn-Norman, S. (2020). Utilizing a new eco-friendly drilling mud additive generated from wastes to minimize the use of the conventional chemical additives. Journal of Petroleum Exploration and Production Technology, 10 (8), 3467-3481. https://doi.org/10.1007/s13202-020-00974-6 |
||||
| Al-Hameedi, A. T. T., Alkinani, H. H., Dunn-Norman, S., Al-Alwani, M. A., Al-Bazzaz, W. H., Alshammari, A. F., Albazzaz, H. W., & Mutar, R. A. (2020). Experimental investigation of bio-enhancer drilling fluid additive: Can palm tree leaves be utilized as a supportive eco-friendly additive in water-based drilling fluid system? Journal of Petroleum Exploration and Production Technology, 10 (2), 595-603. https://doi.org/10.1007/s13202-019-00766-7 |
||||
| Al-Hameedi, A. T. T., Alkinani, H. H., Dunn-Norman, S., Al-Alwani, M. A., Alshammari, A. F., Alkhamis, M. M., Mutar, R. A., & Al-Bazzaz, W. H. (2020). Experimental investigation of environmentally friendly drilling fluid additives (mandarin peels powder) to substitute the conventional chemicals used in water-based drilling fluid. Journal of Petroleum Exploration and Production Technology, 10(2), 407-417. https://doi.org/10.1007/s13202-019-0725-7 |
||||
| Al-Hameedi, A. T. T., Alkinani, H. H., Dunn-Norman, S., Alkhamis, M. M., Al-Alwani, M. A., Mutar, R. A., & Salem, E. (2020). Proposing a new biodegradable thinner and fluid loss control agent for water-based drilling fluid applications. International Journal of Environmental Science and Technology, 17(8), 3621-3632. https://doi.org/10.1007/s13762-020-02650-y |
||||
| Al-Hameedi, A. T. T., Alkinani, H. H., Dunn-Norman, S., Alkhamis, M. M., Al-Alwani, M. A., Mutar, R. A., & Salem, E. (2020). Proposing a new biodegradable thinner and fluid loss control agent for water-based drilling fluid applications. International Journal of Environmental Science and Technology, 17(8), 3621-3632. https://doi.org/10.1007/s13762-020-02650-y |
||||
| Al-Hameedi, A. T. T., Alkinani, H. H., Dunn-Norman, S., Salem, E., Knickerbocker, M. D., Alashwak, N. F., ... & Al-Bazzaz, W. H. (2020, January). Laboratory study of environmentally friendly drilling fluid additives banana peel powder for modifying the drilling fluid characteristics in water-based muds. In International petroleum technology conference (p. D022S123R002). IPTC. https://doi.org/10.2523/IPTC-19964-MS |
||||
| Al-Hameedi, A. T., Alkinani, H. H., & Dunn-Norman, S. (2022). Development of high-performance water-based drilling fluid using biodegradable eco-friendly additive (Peanut Shells). International Journal of Environmental Science and Technology, 19(6), 4959-4970. https://doi.org/10.1007/s13762-021-03472-2 |
||||
| Ali, I., Ahmad, M., & Ganat, T. (2021). Experimental study of bentonite-free water based mud reinforced with carboxymethylated tapioca starch: rheological modeling and optimization using response surface methodology (RSM). Polymers, 13(19), 3320. https://doi.org/10.3390/polym13193320 |
||||
| Ali, I., Ahmad, M., Ridha, S., Iferobia, C. C., & Lashari, N. (2023). Enhancing drilling mud performance through CMITS-modified formulations: rheological insights and performance optimization. RSC advances, 13(47), 32904-32917. https://doi.org/10.1039/D3RA06008J |
||||
| Ali, J. A., Abbas, D. Y., Abdalqadir, M., Nevecna, T., Jaf, P. T., Abdullah, A. D., & Rancová, A. (2024). Evaluation the effect of wheat nano-biopolymers on the rheological and filtration properties of the drilling fluid: towards sustainable drilling process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 683, 133001. https://doi.org/10.1016/j.colsurfa.2023.133001 |
||||
| Ali, J. A., Abdalqadir, M., Najat, D., Hussein, R., Jaf, P. T., Simo, S. M., & Abdullah, A. D. (2024). Application of ultra-fine particles of potato as eco-friendly green additives for drilling a borehole: a filtration, rheological and morphological evaluation. Chemical Engineering Research and Design, 206, 89-107. https://doi.org/10.1016/j.cherd.2024.04.051 |
||||
| Ali, J., Abbas, D., Abdalqadir, M., Nevecna, T., Jaf, P., Abdullah, A. D., & Rancová, A. (2023). Evaluation the effect of wheat nano-biopolymers on the rheological and filtration properties of the drilling fluid: towards sustainable drilling process. Colloids and Surfaces A: Physicochemical and Engineering Aspects 683, 133001. https://doi.org/10.1016/j.colsurfa.2023.133001 |
||||
| Ali, J., Abdalqadir, M., Najat, D., Ali, R., Hussein, A. K., Jaf, P., Simo, S., & Abdullah, A. D. (2024). Application of ultra-fine particles of potato as eco-friendly green additives for drilling a borehole: A filtration, rheological and morphological evaluation. Chemical Engineering Research & Design. Chemical Engineering Research and Design, 206, 89-107 https://doi.org/10.1016/j.cherd.2024.04.051 |
||||
| Alsaba, M., Elgaddafi, R., Ismael, A., Marake, T., & Hersi, A. (2024). Laboratory evaluation to assess the performance of a new eco-friendly drilling fluid additive. Paper presented at the SPE Conference at Oman Petroleum & Energy Show, Muscat, Oman, April 2024. Paper Number: SPE-218758-MS https://doi.org/10.2118/218758-MS |
||||
| Al-Yasiri, M. (2023). Eco-friendly drilling fluid: A study on the use of broad bean peels as a natural additive. Geoenergy Science and Engineering, 231, 212267. https://doi.org/10.1016/j.geoen.2023.212267 |
||||
| Al‐Yasiri, M. (2023). Eco-friendly drilling fluid: A study on the use of broad bean peels as a natural additive. Geoenergy Science and Engineering, 231, 212267. https://doi.org/10.1016/j.geoen.2023.212267 |
||||
| Al‐Yasiri, M. (2023). Eco-friendly oil industry: A case for corn husks as rheology modifier and filtration reducer in drilling fluids. SSRR, 18p. Retrieved from https://doi.org/10.2139/ssrn.4552034. https://doi.org/10.2139/ssrn.4552034 |
||||
| Al-Yasiri, M., Wen, D., & Wen, D. (2019). Gr-Al2O3 Nanoparticles-Based Multifunctional Drilling Fluid. Industrial & Engineering Chemistry Research, 58(23), 10084-10091. https://doi.org/10.1021/acs.iecr.9b00896 |
||||
| Amorin, R. (2017). Local plant seed oils (esters); The Frontier of geothermal drilling applications - A Review. Ghana Journal of Technology, 1(2), 62-72. | ||||
| Arain, A. H., Ridha, S., & Ali, I. (2023). Development and performance evaluation of castor oil based biodiesel as an eco-friendly ester-based drilling fluid. Petroleum Science and Technology, 41(19), 1831-1851. https://doi.org/10.1080/10916466.2022.2097260 |
||||
| Argillier, J. F., Audibert, A., Janssen, M., & Demoulin, A. (1997, February). Performance of a new biodegradable ester based lubricant for improving drilling operations with water based muds. In SPE International Conference on Oilfield Chemistry? (pp. SPE-37264). SPE. https://doi.org/10.2118/37264-MS |
||||
| Assi, A. H. (2024). Using Environmentally Friendly Materials to Improve the Properties of the Drilling Fluid. Iraqi Journal of Chemical and Petroleum Engineering, 25(1), 121-128. https://doi.org/10.31699/IJCPE.2024.1.12 |
||||
| Assi, A. H., & Haiwi, A. A. (2024). Utilizing Environmentally and Recycled Materials to Formulate Drilling Mud. Journal of Petroleum Research and Studies, 14(3), 37-51. https://doi.org/10.52716/jprs.v14i3.837 |
||||
| Awl, M. J., Mahmood, B. S., Mohammed, P. T., Mohammed, H. F., Hamad, A. M., Abdulqadir, A. H., & Abdalqadir, M. O. (2023). Performance evaluation of the new environmentally friendly additive for enhanced fluid loss and rheological properties of drilling fluid. Journal of Chemical and petroleum Engineering, 57(1), 51-61. | ||||
| Bageri, M., & Vordick, T. (2024, September). Eco-Friendly Drilling: Evaluating the Impact of Engineered High-Performance Water-Based Mud on Emissions and Waste. In SPE Annual Technical Conference and Exhibition? (p. D031S044R004). SPE. https://doi.org/10.2118/220869-MS |
||||
| Barron, M. G., Vivian, D. N., Heintz, R. A., & Yim, U. H. (2020). Long-Term Ecological Impacts from Oil Spills: Comparison of Exxon Valdez, Hebei Spirit, and Deepwater Horizon. Environmental Science & Technology, 54(11), 6456-6467. https://doi.org/10.1021/acs.est.9b05020 |
||||
| Bassey, I., Okon, A. N., Igbafe, A. I., & Essien, A. J. (2024). Assessing the rheological and filtration loss control potential of selected plant-based additives in oil-based mud. Petroleum Science and Engineering, 8(2), 100-124. https://doi.org/10.11648/j.pse.20240802.13 |
||||
| Bataee, M., Wong, S., Khur, W. S., Bennour, Z., Mostofi, M., & Hamdi, Z. (2024, October). Performance Analysis of Eco-Friendly Palm Oil Biodiesel as a Replacement for Diesel Oil in Drilling Mud Applications. In SPE Asia Pacific Oil and Gas Conference and Exhibition (p. D031S019R009). SPE. https://doi.org/10.2118/221346-MS |
||||
| Borah, B., & Das, B. M. (2022). A review on applications of bio-products employed in drilling fluids to minimize environmental footprint. Environmental Challenges, 6, 100411. https://doi.org/10.1016/j.envc.2021.100411 |
||||
| Broni-Bediako, E., Ocran, D., Appiah, K., & Charway, S. (2024). Investigation into the potential of dry mango leaves powder as eco-friendly additive in water-based drilling mud. International Journal of Oil, Gas and Coal Engineering, 12(4), 90-100. https://doi.org/10.11648/j.ogce.20241204.11 |
||||
| Caenn, R. (2017). Chapter 1 - Introduction to drilling fluids. In Composition and properties of drilling and completion fluids (Seventh Edition), Elsevier Inc. Pp. 1-34. https://doi.org/10.1016/B978-0-12-804751-4.00001-8 |
||||
| Caenn, R. (2017). Chapter 14 - Drilling and Drilling Fluids Waste Management. In: Composition and properties of drilling and completion fluids (Seventh Edition) (pp. 597-636). Elsevier Inc. Retrieved from https://doi.org/10.1016/B978-0-12-804751-4.00014-6 https://doi.org/10.1016/B978-0-12-804751-4.00014-6 |
||||
| Caenn, R., Darley, H. C. H., & Gray, G. R. (2011). Introduction to Drilling Fluids. Composition and Properties of Drilling and Completion Fluids (Sixth Edition), Pp. 1-37. https://doi.org/10.1016/B978-0-12-383858-2.00001-9 |
||||
| Chen, J., Chen, Y., & Ghosh, T. (2024). Cellulose Nanofibers (CNF) and Nanocrystals (CNC) Pre‐Treatment, Preparation, and Characterization. In: Mukhopadhyay, M., & Bhattacharya, D.(eds.). Nanocellulose: A Biopolymer for Biomedical Applications (pp. 27-61). Wiley. https://doi.org/10.1002/9781394172825.ch2 |
||||
| Clark, R. K. (2000). Drilling Fluids. Wiley. Retrieved from https://doi.org/10.1002/0471238961.0418091203120118.a01 https://doi.org/10.1002/0471238961.0418091203120118.a01 |
||||
| Čolnik, M., Knez-Hrncic, M., Škerget, M., & Knez, Z. (2020). Biodegradable polymers, current trends of research and their applications - A review. Chemical Industry & Chemical Engineering Quarterly, 26(4), 401-418. https://doi.org/10.2298/CICEQ191210018C |
||||
| Dai, C., & Zhao, F. (2018). Drilling Fluid Chemistry (pp. 21-84). Springer, Singapore. https://doi.org/10.1007/978-981-13-2950-0_2 |
||||
| Davoodi, S., Al-Shargabi, M., Wood, D. A., Minaev, K. M., & Rukavishnikov, V. S. (2024). Modified-starch applications as fluid-loss reducers in water-based drilling fluids: A review of recent advances. Journal of Cleaner Production, 434, 140430. https://doi.org/10.1016/j.jclepro.2023.140430 |
||||
| Davoodi, S., Ramazani Sa, A., Rukavishnikov, V., & Minaev, K. (2021). Insights into application of acorn shell powder in drilling fluid as environmentally friendly additive: filtration and rheology. International Journal of Environmental Science and Technology, 18(4), 835-848. https://doi.org/10.1007/s13762-020-02880-0 |
||||
| Deng, C., & Guo, L. (2024). The Impact of Offshore Drilling Activities on Marine Ecosystems. International Journal of Engineering Sciences and Technologies, 2(1), 2-6. https://doi.org/10.58531/ijest/2/1/2 |
||||
| Doley, A., Mahto, V., Rajak, V. K., & Suri, A. (2023). Development of a high-performance drilling fluid additive for application in indian shale gas formations. Energy & Fuels, 37(17), 12824-12837. https://doi.org/10.1021/acs.energyfuels.3c02066 |
||||
| Doley, A., Mahto, V., Rajak, V. K., & Suri, A. (2023). Development of a high-performance drilling fluid additive for application in indian shale gas formations. Energy & Fuels, 37(17), 12824-12837. https://doi.org/10.1021/acs.energyfuels.3c02066 |
||||
| Ebuzeme, I., Olatunji, O., & Olufemi, B. (2021, August). Factorial Design Validation of an Environmentally Benign Water-Based Drilling Fluid from Sweet Potato Peels at Elevated Temperatures. In SPE Nigeria Annual International Conference and Exhibition (p. D021S002R002). SPE. https://doi.org/10.2118/207097-MS |
||||
| Fadhil, E. Y., & Hadi, F. (2024). Biodegradable Shale Inhibitors for Water Based Fluids. Iraqi Geological Journal, 57(2E), 236-251. https://doi.org/10.46717/igj.57.2E.18ms-2024-11-27 |
||||
| Fadhil, E. Y., & Hadi, F. (2024). Enhancing drilling mud efficiency and environmental safety with biodegradable materials. Iraqi Journal of Chemical and Petroleum Engineering, 25(4), 73-79. https://doi.org/10.31699/IJCPE.2024.4.7 |
||||
| Fadhil, E. Y., & Hadi, F. (2024). Enhancing drilling mud efficiency and environmental safety with biodegradable materials. Iraqi journal of chemical and petroleum engineering, 25 (4), 73-79. https://doi.org/10.31699/IJCPE.2024.4.7 |
||||
| Fink, J. K. (2012). Chapter 1 - Drilling Muds. In: Petroleum engineer's guide to oil field chemicals and fluids (pp. 1-59). Elsevier Inc. https://doi.org/10.1016/B978-0-12-383844-5.00001-5 |
||||
| Folayan, A. J., Dosunmu, A., & Oriji, A. B. (2023). Synthesis and characterization of polyvalent high-performance synthetic base oil for drilling operations in recalcitrant and unconventional oil and gas reservoirs. South African Journal of Chemical Engineering, 46, 143-164. https://doi.org/10.1016/j.sajce.2023.08.001 |
||||
| Geri, M. B., Kauffman, D., & Almubarak, T. (2024, February). A Sustainable Approach to Drilling in Shale Formations with Fresh Water-Based Mud System. In International Petroleum Technology Conference (p. D021S033R003). IPTC. https://doi.org/10.2523/IPTC-24069-MS |
||||
| Ghasemi, K., Akbari, A., Jahani, S., & Kazemzadeh, Y. (2025). A critical review of life cycle assessment and environmental impact of the well drilling process. The Canadian Journal of Chemical Engineering, 103(6), 2499-2526. https://doi.org/10.1002/cjce.25539 |
||||
| Hazaimeh, M., Ahmed, E., & Ahmed, E. (2021). Bioremediation perspectives and progress in petroleum pollution in the marine environment: a review. Environmental Science and Pollution Research, 28(39), 54238-54259. https://doi.org/10.1007/s11356-021-15598-4 |
||||
| Hossain, M. E. (2019). Biodegradable water-in-oil emulsion drilling fluid. Retrieved from https://patents.google.com/ patent/US10844268B2/en | ||||
| Hossain, M. E., Al-Majed, A., Adebayo, A. R., Apaleke, A. S., & Rahman, S. M. (2017). A critical review of drilling waste management towards sustainable solutions. Environmental Engineering and Management Journal, 16(7), 1435-1450. https://doi.org/10.30638/eemj.2017.156 |
||||
| Huang, X., Jinsheng, S. U. N., Kaihe, L. Y. U., Xiaodong, D. O. N. G., Fengbao, L. I. U., & Chongyang, G. A. O. (2023). A high-temperature resistant and high-density polymeric saturated brine-based drilling fluid. Petroleum Exploration and Development, 50(5), 1215-1224. https://doi.org/10.1016/S1876-3804(23)60460-4 |
||||
| Ikram, R., Mohamed Jan, B., Sidek, A., & Kenanakis, G. (2021). Utilization of eco-friendly waste generated nanomaterials in water-based drilling fluids; state of the art review. Materials, 14(15), 4171. https://doi.org/10.3390/ma14154171 |
||||
| Ikram, R., Mohamed Jan, B., Sidek, A., & Kenanakis, G. (2021). Utilization of eco-friendly waste generated nanomaterials in water-based drilling fluids; state of the art review. Materials, 14(15), 4171. https://doi.org/10.3390/ma14154171 |
||||
| Ilinykh, G., Fellner, J., Sliusar, N., & Korotaev, V. (2023). A life cycle assessment of drilling waste management: a case study of oil and gas condensate field in the north of western Siberia, Russia. Sustainable Environment Research, 33(1), 9. https://doi.org/10.1186/s42834-023-00171-0 |
||||
| Imarhiagbe, E. E., & Obayagbona, N. O. (2019). Environmental evaluation and biodegradability of drilling waste: A case study of drill cuttings from Ologbo Oilfield Wells at Edo State, Nigeria. IntechOpen. Retrieved from https://doi.org/10.5772/ INTECHOPEN.88612 | ||||
| Ismail, A. R., Ismail, N., Jaafar, M. Z., & Hassan, R. (2014, September). The application of biodiesel as an environmental friendly drilling fluid to drill oil and gas wells. In Proceedings of the 5th Sriwijaya International Seminar on Energy and Environmental Science & Technology, Palembang, Indonesia September 10-11, Pp. 16-20. | ||||
| Ismail, A. R., Mohd, N. M., Basir, N. F., Oseh, J. O., Ismail, I., & Blkoor, S. O. (2020). Improvement of rheological and filtration characteristics of water-based drilling fluids using naturally derived henna leaf and hibiscus leaf extracts. Journal of Petroleum Exploration and Production Technology, 10(8), 3541-3556. https://doi.org/10.1007/s13202-020-01007-y |
||||
| Jamrozik, A., Protasova, E., Gonet, A., Bilstad, T., & Żurek, R. (2016). Characteristics of oil based muds and influence on the environment. AGH Drilling, Oil, Gas, 33(4), 681. https://doi.org/10.7494/drill.2016.33.4.681 |
||||
| Kamal, I., Abdullah, B., Albadran, F., Kasim, A. S., & Sarbast, M. (2023). Environmentally friendly additives for aqueous drilling fluid systems: Optimum flow characteristics and models. E3S Web of Conferences, 405, 02022. https://doi.org/10.1051/e3sconf/202340502022 |
||||
| Kelly, M. (2022). Advanced developments in environmentally friendly lubricants for water-based drilling fluid: A review. RSC Advances, 12(35), 22853-22868. https://doi.org/10.1039/D2RA03888A |
||||
| Khan, A., Shahid, A. S. A., & Zahoor, M. K. (2024, February). Sustainable drilling fluid design; utilizing waste biomass as drilling fluid additive. In International Petroleum Technology Conference (p. D021S032R002). IPTC. https://doi.org/10.2523/IPTC-24133-MS |
||||
| Khan, M. A., Li, M. C., Lv, K., Sun, J., Liu, C., Liu, X., ... & Lalji, S. M. (2024). Cellulose derivatives as environmentally-friendly additives in water-based drilling fluids: A review. Carbohydrate Polymers, 342, 122355. https://doi.org/10.1016/j.carbpol.2024.122355 |
||||
| Khan, M. A., Li, M. C., Lv, K., Sun, J., Liu, C., Liu, X., Shen, H., Dai, L., & Lalji, S. M. (2024). Cellulose derivatives as environmentally-friendly additives in water-based drilling fluids: A review. Carbohydrate Polymers, 342, 122355. https://doi.org/10.1016/j.carbpol.2024.122355 |
||||
| Khan, M. A., Li, M. C., Lv, K., Sun, J., Liu, C., Liu, X., Shen, H., Dai, L., & Lalji, S. M. (2024). Cellulose derivatives as environmentally-friendly additives in water-based drilling fluids: A review. Carbohydrate Polymers, 342, 122355. https://doi.org/10.1016/j.carbpol.2024.122355 |
||||
| Le Gars, M., Douard, L., Belgacem, N., & Bras, J. (2020). Cellulose nanocrystals: From classical hydrolysis to the use of deep eutectic solvents. London, UK: IntechOpen. https://doi.org/10.5772/intechopen.89878 |
||||
| Le, N. N. H., Hau, D. P., Hieu, L. T., Quang, H. T., Tam, T. N. T., Dung, T. T., & Khanh, D. Q. (2023). An Eco-Friendly Fluid Loss Control Additive for Water-Based Bentonite Drilling Fluid: Orange Peel Waste. Chemical Engineering Transactions, 106, 931-936. | ||||
| Lei, M., Zhu, H., Sun, J., & Huang, W. (2024, August). Formulation and evaluation of novel fully bio-based drilling fluid with strong inhibition and temperature-enhanced plugging properties. In IADC/SPE Asia Pacific Drilling Technology Conference and Exhibition? (p. D021S011R003). SPE. https://doi.org/10.2118/219650-MS |
||||
| Lei, M., Zhu, H., Sun, J., & Huang, W. (2024, August). Formulation and Evaluation of Novel Fully Bio-Based Drilling Fluid with Strong Inhibition and Temperature-Enhanced Plugging Properties. In IADC/SPE Asia Pacific Drilling Technology Conference and Exhibition? (p. D021S011R003). SPE. https://doi.org/10.2118/219650-MS |
||||
| Li, A., Gao, S., Zhang, G., Zeng, Y., Hu, Y., Zhai, R., ... & Zhang, J. (2024). A review in polymers for fluid loss control in drilling operations. Macromolecular Chemistry and Physics, 225(8), 2300390. https://doi.org/10.1002/macp.202300390 |
||||
| Li, H. (2021). Development and application of a novel green water-based drilling fluid. Environmental and Earth Sciences Research Journal, 8(1), 61-64. https://doi.org/10.18280/eesrj.080107 |
||||
| Li, M.-C., Li, M.-C., Wu, Q., Moon, R. J., Hubbe, M. A., & Bortner, M. J. (2021). Rheological Aspects of Cellulose Nanomaterials: Governing Factors and Emerging Applications. Advanced Materials, 33(21), 2006052. https://doi.org/10.1002/adma.202006052 |
||||
| Li, X., Jiang, G., He, Y., & Chen, G. (2021). Novel starch composite fluid loss additives and their applications in environmentally friendly water-based drilling fluids. Energy & Fuels, 35(3), 2506-2513. https://doi.org/10.1021/acs.energyfuels.0c03258 |
||||
| Li, X., Jiang, G., He, Y., & Chen, G. (2021). Novel starch composite fluid loss additives and their applications in environmentally friendly water-based drilling fluids. Energy & Fuels, 35 (3), 2506-2513. https://doi.org/10.1021/acs.energyfuels.0c03258 |
||||
| Li, X., Jiang, G., Shen, X., & Li, G. (2020). Application of tea polyphenols as a biodegradable fluid loss additive and study of the filtration mechanism. ACS omega, 5(7), 3453-3461. https://doi.org/10.1021/acsomega.9b03712 |
||||
| Lin, Y., Tian, Q., Lin, P., Tan, X., Qin, H., & Chen, J. (2023). Effect of nanoparticles on rheological properties of water-based drilling fluid. Nanomaterials, 13(14), 2092. https://doi.org/10.3390/nano13142092 |
||||
| Liu, X., Li, M. C., Liao, B., Liu, S., Lu, K., Lv, K., Sun, J., Liu, C., Mei, C., Wu, Q., & Wu, Q. (2023). Wood-derived lignocellulose nanomaterials as multifunctional agents in eco-friendly pickering emulsion-based drilling fluids. Chemical Engineering Journal, 475, 146372. https://doi.org/10.1016/j.cej.2023.146372 |
||||
| Long, W., Zhu, X., Zhou, F., Yan, Z., Evelina, A., Liu, J., Wei, Z., & Ma, L. (2022). Preparation and Hydrogelling Performances of a New Drilling Fluid Filtrate Reducer from Plant Press Slag. Gels, 8(4), 201. https://doi.org/10.3390/gels8040201 |
||||
| Lyu, S., Wang, S., & Xiao, Y. (2018, July). Research and Application of Biodegradable Polymer Drilling Fluid System Protecting Coalbed Methane Reservoir. In Proceedings of the International Field Exploration and Development Conference 2017 (pp. 1710-1721). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-10-7560-5_155 |
||||
| Mahamadou, A. S., & Jun, G. (2024). Enhancement of rheological properties of nano-Fe2O3-modified drilling fluids. SPE Journal, 29(11), 5915-5928. https://doi.org/10.2118/223105-PA |
||||
| Mahmoud, A., Gajbhiye, R., & Elkatatny, S. (2024). Investigating the efficacy of novel organoclay as a rheological additive for enhancing the performance of oil-based drilling fluids. Scientific Reports, 14(1), 5323. https://doi.org/10.1038/s41598-024-55246-8 |
||||
| Maitra, J., & Bhardwaj, N. (2025). Development of bio-based polymeric blends-a comprehensive review. Journal of Biomaterials Science, Polymer Edition, 36(1), 102-136. https://doi.org/10.1080/09205063.2024.2394300 |
||||
| Medved, I., Gaurina-Međimurec, N., Mavar, K. N., & Mijić, P. (2022). Waste mandarin peel as an eco-friendly water-based drilling fluid additive. Energies, 15 (7), 2591-2591. https://doi.org/10.3390/en15072591 |
||||
| Meghana, M. C., Nandhini, C., Benny, L., George, L., & Varghese, A. (2023). A road map on synthetic strategies and applications of biodegradable polymers. Polymer Bulletin, 80(11), 11507-11556. https://doi.org/10.1007/s00289-022-04565-9 |
||||
| Moffatt, K. (2022). Carboxylated cellulose nanocrystals as environmental-friendly and multi-functional additives for bentonite water-based drilling fluids under high-temperature conditions. Cellulose, 29(12), 6659-6675. https://doi.org/10.1007/s10570-022-04676-6 |
||||
| Moffatt, K. (2022). Carboxylated cellulose nanocrystals as environmental-friendly and multi-functional additives for bentonite water-based drilling fluids under high-temperature conditions. Cellulose, 29(12), 6659-6675. https://doi.org/10.1007/s10570-022-04676-6 |
||||
| Moffatt, K. (2022). Carboxylated cellulose nanocrystals as environmental-friendly and multi-functional additives for bentonite water-based drilling fluids under high-temperature conditions. Cellulose, 29(12), 6659-6675. https://doi.org/10.1007/s10570-022-04676-6 |
||||
| Moffatt, K. (2022). Carboxylated cellulose nanocrystals as environmental-friendly and multi-functional additives for bentonite water-based drilling fluids under high-temperature conditions. Cellulose, 29 (12), 6659-6675. https://doi.org/10.1007/s10570-022-04676-6 |
||||
| Mohammed, M. H., Whiting, A., Greenwell, H. C., Batal, M. A., Hall, J. A., Alabedi, G. S., & Hodder, M. H. (2020). Oil-based drilling fluids for high pressure and high temperature drilling operations. United States Patent Application 20190055448. Retrieved from https://www.freepatentsonline.com/y2019/ 0055448.html | ||||
| Natterodt, J. C., Petri-Fink, A., Weder, C., & Zoppe, J. O. (2017). Cellulose Nanocrystals: Surface Modification, Applications and Opportunities at Interfaces. Chimia, 71(6), 376-383. https://doi.org/10.2533/chimia.2017.376 |
||||
| Ni, W., Wang, W., Wang, Q., Du, W., & Chen, G. (2021). Modification and application of waste shaddock peel as a green additive for water-based drilling fluid. Journal of Biobased Materials and Bioenergy, 15(3), 380-384. https://doi.org/10.1166/jbmb.2021.2055 |
||||
| Nwala, S. (2024, August). Tests on locally sourced mud bio-additives show better rheological and loss circulation control properties to enhance drilling performance and guarantee energy supply. In SPE Nigeria Annual International Conference and Exhibition (p. D022S027R009). SPE. https://doi.org/10.2118/221790-MS |
||||
| Patidar, A. K., Sharma, A., & Joshi, D. (2020). Formulation of cellulose using groundnut husk as an environment-friendly fluid loss retarder additive and rheological modifier comparable to pac for wbm. Journal of Petroleum Exploration and Production Technology, 10 (8), 3449-3466. https://doi.org/10.1007/s13202-020-00984-4 |
||||
| Peng, J., Zhang, H., Li, X., Fang, S., Duan, M., Wan, L., & Zuo, H. (2024). Effect of concentration and functional group of cellulose nanocrystals on the rheological and filtration properties of water-based drilling fluids at various temperatures. Cellulose, 31(8), 5151-5169. https://doi.org/10.1007/s10570-024-05890-0 |
||||
| Prakash, V., Sharma, N., Bhattacharya, M., & Beg, M. (2023). Application of new environment friendly natural product in water based drilling fluid to improve its filtration properties. International Journal of Environmental Science and Technology, 20(1), 993-1006. https://doi.org/10.1007/s13762-021-03781-6 |
||||
| Prakash, V., Sharma, N., Bhattacharya, M., Raina, A., Gusain, M. M., & Sharma, K. (2021). Evaluation of environment friendly micro-ionized litchi leaves powder (LLP) as a fluid loss control agent in water-based drilling fluid. Journal of Petroleum Exploration and Production, 11(4), 1715-1726. https://doi.org/10.1007/s13202-021-01147-9 |
||||
| Qiu, Z., & Zhao, X. (2013). Current status and developing trend of deepwater drilling fluid technology. Special Oil & Gas Reservoirs, 20, 1-7. | ||||
| Rahman, S. U.., Siddiqui, R., Mustafa, M., Lalji, S. M., Ali, S. I., & Abbasi, F. A. (2024, November). Shale Swelling Inhibitor Utilizing Taro Root, Alginate, and Activated Carbon from Waste Material. In Abu Dhabi International Petroleum Exhibition and Conference (p. D041S153R006). SPE. | ||||
| Rasool, M. H., & Ahmad, M. (2023). Epsom Salt-based natural deep eutectic solvent as a drilling fluid additive: A game-changer for shale swelling inhibition. Molecules, 28(15), 5784. https://doi.org/10.3390/molecules28155784 |
||||
| Rasool, M. H., Ahmad, M., Siddiqui, N. A., & Ali, H. (2024). Novel application of citric acid based natural deep eutectic solvent in drilling fluids for shale swelling prevention. Scientific Reports, 14(1), 25729. https://doi.org/10.1038/s41598-024-76182-7 |
||||
| Rasool, M. H., Ahmad, M., Siddiqui, N. A., & Ali, H. (2024). Novel application of citric acid based natural deep eutectic solvent in drilling fluids for shale swelling prevention. Scientific Reports, 14(1), 25729. https://doi.org/10.1038/s41598-024-76182-7 |
||||
| Rasool, M. H., Ahmad, M., Siddiqui, N. A., & Ali, H. (2024). Novel application of citric acid based natural deep eutectic solvent in drilling fluids for shale swelling prevention. Scientific Reports, 14(1), 25729. https://doi.org/10.1038/s41598-024-76182-7 |
||||
| Rasool, M. H., Ahmad, M., Siddiqui, N. A., & Junejo, A. Z. (2023). Eco-friendly drilling fluid: Calcium chloride-based natural deep eutectic solvent (NADES) as an all-rounder additive. Energies, 16(14), 5533. https://doi.org/10.3390/en16145533 |
||||
| Raza, A., Hussain, M., Raza, N., Aleem, W., Ahmad, S., & Qamar, S. (2023). Rice husk ash as a sustainable and economical alternative to chemical additives for enhanced rheology in drilling fluids. Environmental Science and Pollution Research, 30(48), 105614-105626. https://doi.org/10.1007/s11356-023-29856-0 |
||||
| Razali, S. Z., Yunus, R., Rashid, S. A., Lim, H. N., & Jan, B. M. (2018). Review of biodegradable synthetic-based drilling fluid: Progression, performance and future prospect. Renewable and Sustainable Energy Reviews, 90, 171-186. https://doi.org/10.1016/j.rser.2018.03.014 |
||||
| Ricky, E., Mpelwa, M., Wang, C., Hamad, B., & Xu, X. (2022). Modified corn starch as an environmentally friendly rheology enhancer and fluid loss reducer for water-based drilling mud. SPE Journal, 27(02), 1064-1080. https://doi.org/10.2118/209195-PA |
||||
| Sarbast, R., Kamal, I., Salih, N., & Préat, A. (2023). Aqueous drilling fluids systems incorporated with green nanoparticles and industrial spent caustic: Optimum rheology and filtration loss properties. In E3S Web of Conferences (Vol. 405, p. 01013). EDP Sciences. https://doi.org/10.1051/e3sconf/202340501013 |
||||
| Seyedmohammadi, J. (2017). The effects of drilling fluids and environment protection from pollutants using some models. Modeling Earth Systems and Environment, 3(1), 1-14. https://doi.org/10.1007/s40808-017-0299-7 |
||||
| Shuvo, M. A. I., Sultan, M. Z. B., & Ferdous, A. R. (2024). Applicability of sawdust as a green additive to improve the rheological and filtration properties of water-based drilling fluid: an experimental investigation. Journal of Petroleum Exploration and Production Technology, 14(1), 303-315. https://doi.org/10.1007/s13202-023-01706-2 |
||||
| Sid, A. N. E. H., Tahraoui, H., Kebir, M., Bezzekhami, M. A., Kouini, B., Hassein-Bey, A. H., Selma, T., Amrane, A., Imessaoudene, A., & Mouni, L. (2023). Comparative investigation of the effect of eggshellpowder and calcium carbonate as additivesin eco-friendly polymer drilling fluids. Sustainability, 15(4), 3375. https://doi.org/10.3390/su15043375 |
||||
| Siddique, S., Kwoffie, L., Addae-Afoakwa, K., Yates, K., & Njuguna, J. (2017, May). Oil based drilling fluid waste: An overview on environmentally persistent pollutants. In IOP conference series: materials science and engineering (Vol. 195, No. 1, p. 012008). IOP Publishing. https://doi.org/10.1088/1757-899X/195/1/012008 |
||||
| Sousa, R. P. D., Braga, G. S., Silva, R. R. D., Leal, G. L., Freitas, J. C., Madera, V. S., Garnica, A. I. C., & Curbelo, F. D. (2021). Formulation and study of an environmentally friendly microemulsion-based drilling fluid (O/W) with pine oil. Energies, 14(23), 7981. https://doi.org/10.3390/en14237981 |
||||
| Sulaimon, A. A., Akintola, S. A., Johari, M. A. B. M., & Isehunwa, S. (2020). Evaluation of drilling muds enhanced with modified starch for HPHT well applications. Journal of Petroleum Exploration and Production Technology, 11(1), 203-218. https://doi.org/10.1007/s13202-020-01026-9 |
||||
| Sun, Y., Zhu, X., Zhao, J., & Sui, D. (2020). Study on a new environmentally friendly synthetic fluid for preparing synthetic-based drilling fluid. Frontiers in Chemistry, 8, 539690. https://doi.org/10.3389/fchem.2020.539690 |
||||
| Thibodeaux, G. M., Baudoin, N. A., & Chirdon, W. M. (2023). Investigation of proteinaceous algal biomass as a drilling fluid component. Results in Engineering, 19, 101364. https://doi.org/10.1016/j.rineng.2023.101364 |
||||
| Tyagi, V., & Thakur, A. (2023). Applications of biodegradable carboxymethyl cellulose-based composites. Results in Materials, 20, 100481. https://doi.org/10.1016/j.rinma.2023.100481 |
||||
| Veil, J. A., Burke, C. J., & Moses, D. O. (1995). Synthetic drilling fluids-a pollution prevention opportunity for the oil and gas industry (No. ANL/EA/CP-84907; CONF-951023-1). Argonne National Lab.(ANL), Argonne, IL (United States). | ||||
| Wei, Z., Wang, M., Li, Y., An, Y., Li, K., Bo, K., & Guo, M. (2022). Sodium alginate as an eco-friendly rheology modifier and salt-tolerant fluid loss additive in water-based drilling fluids. RSC Advances, 12 (46), 29852-29864. https://doi.org/10.1039/D2RA04448J |
||||
| Wu, Y., You, F., Hou, S., & Zhou, S. (2023). Study of a novel cross linked graft copolymer starch in water-based drilling fluid. Materials Research Express, 10(5), 055501. https://doi.org/10.1088/2053-1591/acd227 |
||||
| Wypych, A. (2022). Chapter 4- Drilling fluids. In: Fluid chemistry, drilling and completion (pp. 115-185). Oil and Gas Chemistry Management Series. Elsevier eBooks. Retrieved from https://doi.org/10.1016/b978-0-12-822721-3.00010-1. https://doi.org/10.1016/B978-0-12-822721-3.00010-1 |
||||
| Xie, S. X., Jiang, G., Chen, M., Deng, H., & Yu, X. (2012). Study and application of green throwing drilling fluid. Petroleum Science and Technology, 30(5), 443-452. https://doi.org/10.1080/10916461003716624 |
||||
| Yalçın, G., Öztuna, S., Dalkılıç, A. S., & Wongwises, S. (2023). The influence of particle size on the viscosity of water based ZnO nanofluid. Alexandria Engineering Journal, 68, 561-576. https://doi.org/10.1016/j.aej.2022.12.047 |
||||
| Yalman, E., Depci, T., Federer-Kovacs, G., & Al Khalaf, H. (2021). A new eco-friendly and low cost additive in water-based drilling fluids. Rudarsko-geološko-naftni zbornik, 36(5), 1-12. https://doi.org/10.17794/rgn.2021.5.1 |
||||
| Yang, J., Sun, J., Wang, R., Qu, Y., Liu, F., Feng, X., ... & Liu, L. (2024). Investigation of TPEG comb polymer as filtration and rheological additives for high-temperature water-based drilling fluid. Journal of Molecular Liquids, 400, 124577. https://doi.org/10.1016/j.molliq.2024.124577 |
||||
| Yang, S., Wang, X., Pan, Y., & Zhan, Q. (2023). Environmentally Friendly Drilling Fluid Lubricant: A Review. Industrial & Engineering Chemistry Research, 62(21), 8146-8162. https://doi.org/10.1021/acs.iecr.3c00767 |
||||
| Zamora-Ledezma, C., Narváez-Muñoz, C., Guerrero, V. H., Medina, E., & Meseguer-Olmo, L. (2022). Nanofluid formulations based on two-dimensional nanoparticles, their performance, and potential application seeas water-based drilling fluids. ACS Omega, 7(24), 20457-20476. https://doi.org/10.1021/acsomega.2c02082 |
||||
| Zhang, F., Li, Y., Zhang, W., Wang, Y., Ai, E., Liu, Z., Wei, L., & Li, Q. (2023). Synthesis of an eco-friendly xylooligosaccharides and its mechanistic evaluation in water-based drilling fluids. Sustainability, 15(22), 15993. https://doi.org/10.3390/su152215993 |
||||
| Zhang, H., Li, X., Shao, Y., Wang, K., Peng, J., & Fang, H. (2024). Application of starch microspheres modified by alkyl polyglucoside as environmental-friendly fluid loss additive in water-based drilling fluids. Energy & Fuels, 38(11), 10381-10389. https://doi.org/10.1021/acs.energyfuels.4c00589 |
||||
| Zhang, H., Li, X., Shao, Y., Wang, K., Peng, J., & Fang, H. (2024). Application of starch microspheres modified by alkyl polyglucoside as environmental-friendly fluid loss additive in water-based drilling fluids. Energy & Fuels, 38(11), 10381-10389. https://doi.org/10.1021/acs.energyfuels.4c00589 |
||||
| Zhou, G., Qiu, Z., Zhong, H., Zhao, X., & Kong, X. (2021). Study of environmentally friendly wild jujube pit powder as a water-based drilling fluid additive. ACS Omega, 6, 1436-1444. https://doi.org/10.1021/acsomega.0c05108 |
||||