ISSN: 2756-6684
Model: Open Access/Peer Reviewed
DOI: 10.31248/AJPS
Start Year: 2018
Email: ajps@integrityresjournals.org
https://doi.org/10.31248/AJPS2023.098 | Article Number: 5008EFF71 | Vol.5 (4) - October 2023
Received Date: 25 August 2023 | Accepted Date: 28 September 2023 | Published Date: 30 October 2023
Authors: Abdullahi Abubakar Mundi* , Idris Mohammed Mustapha , Umar Ibrahim , Soja Reuben Joseph and Sidi Muhammad Aliyu
Keywords: activity concentration, ALARA, natural occurring radionuclides, radiological dose, radiation exposure, radiological hazard, radiation protection.
The present study analyzes radiological dose and hazard around the swampy agricultural soil in Keffi Local Government Area of Nasarawa State, using determined activity concentration (AC) of 238U, 232Th and 40K obtained from swampy agricultural soil samples, systematically collected from Ten (10) sampled points. Samples collected were further analyzed using a sodium iodide detector for activity concentrations of 238U, 232Th and 40K. The average AC of 238U, 232Th and 40K were 26.73±4.64, 9.77±2.57 and 1115.52 ±67.43 Bq/kg, respectively. The gamma absorbed dose rate (Dabs) ranges from 6.37E-01 to 2.33E+01 nGy/hr with a mean value of 6.10E+00 nGy/hr. The annual effective dose equivalent (AEDE) ranges from 8.12E-03 to 2.97E-01 mSv/yr with an estimated mean value of 7.77E-02 mSv/yr. The annual gonadal dose equivalent ranges from 4.48E-02 to 1.72E+01 mSv/yr with a mean value of 4.49E-01 mSv/yr. The calculated radium equivalent activity ranges from 1.44E+01 to 4.49E+02 Bq/kg with a mean value of 1.18E+02 Bq/kg, which falls below the recommended standard value of 3.7E+02 Bq/kg. The external and internal hazard index ranges from 3.89E-02 to 1.21E+00 mSv/yr with a mean value of 3.20E-01 mSv/yr, and 3.90E-02 to 1.41E+00 mSv/yr with a mean value of 3.70E-01 mSv/yr. The gamma hazard index ranges from 5.24E-02 to 1.84E+00 mSv/yr with a mean value of 4.83E-01 mSv/yr. The activity utilization index ranges from 8.65E-02 to 1.34E+00 mSv/yr with a mean value of 3.82E-01 mSv/yr, excess life cancer risk (ELCR) for both adult and child was found to be 1.94E-01 and 2.72E-01, respectively, higher than the recommended world average value of 0.29E-03. The high value of ELCR implies that residents around the study area have a high chance of developing cancer over a lifetime. Hence periodic radiological dose and hazard analysis is recommended to keep the exposure as low as reasonably achievable.
Abba, L., & Sani, L. A. (2023). Assessment of Excess Lifetime Cancer Risk from Gamma Radiation Levels around Sokoto Cement Industrial Area, Northwestern Nigeria. Fudma Journal of Sciences, 7(1), 212-218. https://doi.org/10.33003/fjs-2023-0701-1291 |
||||
Abbady, E.G.A., Uosif, M. A., & El-Taher, A. (2005). Natural Radioactivity and Dose Assessment for Phosphate Rocks from Wadi El-Mashash and El-Mahamid Mines, Egypt. Journal of Environmental Radioactivity, 84(6), 65-78. https://doi.org/10.1016/j.jenvrad.2005.04.003 |
||||
Abdelbary, H. M., Elsofany, E. A., Mohamed, Y. T., Abo-Aly, M. M., &Attallah, M. F. (2019). Characterization and radiological impacts assessment of scale TENORM waste produced from oil and natural gas production in Egypt. Environmental Science and Pollution Research, 26, 30836-30846. https://doi.org/10.1007/s11356-019-06183-x |
||||
Azhdarpoor, A., Hoseini, M., Shahsavani, S., Shamsedini, N., & Gharehchahi, E. (2021). Assessment of excess lifetime cancer risk and risk of lung cancer due to exposure to radon in a middle eastern city in Iran. Radiation Medicine and Protection, 2(03), 112-116. https://doi.org/10.1016/j.radmp.2021.07.002 |
||||
Bahreini T., M. T., Haghparast, M., Darvish, L., Taeb, S., Afkhami A. M., Dehghani, N., & Refahi, S. (2020). Assessment of Environmental Gamma Radiation (Outdoor and Indoor Spaces) in the Region of Bandar Abbas Gachine. Journal of Biomedical Physics and Engineering, 10(2), 177-186. | ||||
Bajoga, A. D., Al-Dabbous, A. N., Abdullahi, A. S., Alazemi, N. A., Bachama, Y. D., &Alaswad, S. O. (2019). Evaluation of elemental concentrations of uranium, thorium and potassium in top soils from Kuwait. Nuclear Engineering and Technology, 51(6), 1638-1649. https://doi.org/10.1016/j.net.2019.04.021 |
||||
Berekta J., Mathew P. J., Natural radioactivity of Australian building materials waste and by-products, Health Phys. 48 (1985) 8. https://doi.org/10.1097/00004032-198501000-00007 |
||||
Boucher, M. (2008). External background radiation in the Fribourg (Switzerland) urban area (PhD Thesis No. 1599). Université de Fribourg, Switzerland, 225. | ||||
Dauda, S., Soja, R., & Umar, I. (2022). Evaluation of Radionuclides Transfer Factors and Ingestion Dose from Plants around Mining Sites in Adamawa State Nigeria. International Journal, 10(1), 88-101. https://doi.org/10.18488/63.v10i1.3158 |
||||
Eka, D. N. Masahiro, H., Kusdiana, H., Untara, U., June, M., Nurokhim, N., Yuki, T., Abarrul, I., Mukh, S., Ryohei, Y., Naofumi, A., Michiya, S., Masahide, F., Shinji, Y., Masaru, Y., Tomisato, M., Ikuo, K., & Shinji, T. (2021). Comprehensive exposure assessments from the viewpoint of health in a unique high natural background radiation area, Mamuju, Indonesia. Scientific Reports, 11(14578), 1-16. https://doi.org/10.1038/s41598-021-93983-2 |
||||
El-Gamal, H., Sidique, E., El-Haddad, M., &Farid, M. E. A. (2018). Assessment of the natural radioactivity and radiological hazards in granites of Mueilha area (South Eastern Desert, Egypt). Environmental Earth Sciences, 77, 1-14. https://doi.org/10.1007/s12665-018-7880-x |
||||
Emmanuel, S. J., Dilip, K. D., Maxwell, O., Olusegun, A., Olukunle, C. O. Akinpelu, A., Similoluwa, E. & Gideon, A. A. (2020).Assessment of background radionuclides and gamma dose rate distribution in Urban-setting and its radiological significance. Scientific African, 8(2020), 1-8. https://doi.org/10.1016/j.sciaf.2020.e00377 |
||||
Fall, E. H. M., Nechaf, A., Niang, M., Rabia, N., Ndoye, F., & Faye, N. A. B. (2023). Assessment of occupational radiation exposure of NORM scales residues from oil and gas production. Nuclear Engineering and Technology, 55(5), 1757-1762. https://doi.org/10.1016/j.net.2023.02.012 |
||||
Haghparast, M., Afkhami, A. M., Navaser, M., Refahi, S., Najafzadeh, M., Ghaffari, H. & Masoumbeigi, M. (2020). Assessment of background radiation levels in the southeast of Iran. Medical Journal of the Islamic Republic of Iran, 34, 56. https://doi.org/10.47176/mjiri.34.56 |
||||
Hamoo, Z. N., & Najam, L. A. (2020). Natural radioactivity for soil samples of different sites of Ancient Mosul. Technology Reports of Kansai University, 62, 979-987. | ||||
Haridasan, P. P. (2015). Opening Address by PP Haridasan [NORM VII: 7. International Symposium on Naturally Occurring Radioactive Material on Naturally Occurring Radioactive Material, Beijing (China), 22-26 April 2013]. In Naturally Occurring Radioactive Material (NORM VII). Proceedings of an International Symposium. | ||||
Hilal, M. A., Attallah, M. F., Mohamed, G. Y., & Fayez-Hassan, M. (2014). Evaluation of radiation hazard potential of TENORM waste from oil and natural gas production. Journal of Environmental Radioactivity, 136, 121-126. https://doi.org/10.1016/j.jenvrad.2014.05.016 |
||||
International Commission for Radiological Protection (ICRP) (2007). Chapters 3 and 4. Annals of the ICRP, 37(2-4), 49-79. https://doi.org/10.1016/j.icrp.2007.10.005 |
||||
Iqbal, M., Tufail, M., & Mirza, S. M. (2000). Measurement of natural radioactivity in marble found in Pakistan using a NaI (Tl) gamma-ray spectrometer. Journal of Environmental Radioactivity, 51(2), 255-265. https://doi.org/10.1016/S0265-931X(00)00077-1 |
||||
Joseph, S. R., Ibrahim, U., Nasiru-Deen, A. B., U., Nuradeen. N. G., Gusau, B., & Mundi, A. A. (2023). Analytical evaluation of inhalation dose from residual radioactivity to offsite residents in Nigeria using ICRP age dependent dose coefficients. Journal of Radiation and Nuclear Applications, 8(2), 183-191. https://doi.org/10.18576/jrna/080212 |
||||
Joseph, S. R., Lumbi, L. W., Ibrahim, U., Yusuf, S. D., Mundi, A. A., Mustapha, I. M., & Oduh, I. O. (2022). Estimation of Public Radiological Dose from Mining Activities in some Selected Cities in Nigeria. Dutse Journal of Pure and Applied Sciences, 8, 22-35. https://doi.org/10.4314/dujopas.v8i1a.3 |
||||
Kolo, M. T., Aziz, S., & Khandaker, M. U. (2015). Evaluation of radiological risks due to natural radioactivity around Lynas Advanced Material Plant environment, Kuantan, Pahang, Malaysia, Environmental Science and Pollution Research., 22(17), 13127-13136 https://doi.org/10.1007/s11356-015-4577-5 |
||||
Mantazul, I. C., Alam, M. N., & Ahmed, A. K. S. (1998). Concentration of radionuclides in building and ceramic materials of Bangladesh and evaluation of radiation hazard. Journal of Radioanalytical and Nuclear Chemistry, 231 (1&2), 117-122 https://doi.org/10.1007/BF02388016 |
||||
Morsy, Z., Abd El-Wahab, M., & El-Faramawy, N. (2012). Determination of natural radioactive elements in Abo Zaabal, Egypt by means of gamma spectroscopy. Annals of Nuclear Energy, 44(1), 8-11. https://doi.org/10.1016/j.anucene.2012.01.003 |
||||
Mundi, A. A., Umar, I. & Idris M. M. (2019). Contamination and pollution risk assessment ofheavy metals in rice samples (Oryza sativa) from Nasarawa West, Nigeria. Asian Journal of Advanced Research and Reports, 3(4), 1-8. https://doi.org/10.9734/ajarr/2019/v3i430097 |
||||
Najam, L. A., & Marie, Z. M. (2022). Evaluation of natural radioactivity and radiological hazard indicators in soil samples from the environment of Al-Kasik oil refinery in Nineveh Governorate, Iraq. Arab Journal of Nuclear Sciences and Applications, 55(4), 57-66. https://doi.org/10.21608/ajnsa.2022.135253.1573 |
||||
Nuclear Energy Agency (NEA-OECD) (1979). Exposure to Radiation from natural radioactivity in building materials. Report by NEA Group of Experts, Paris. | ||||
Odeleye, O. S., Umar, I., Samson, D. Y., Abdullahi, A. M. & Idris, M. M. (2019). Assessment of Natural Radioactivity and Estimation of Radiation Dose Parameters around Cement Production Company in Ibese, Ogun State, Nigeria. Dutse Journal of Pure and Applied Sciences, 5(2b), 20-28. | ||||
Oduh, I. O., Joseph, S. R., Olarinoye, O., &Kolo, M. (2022). Evaluation of radioactivity concentration of some selected mineral rocks from Mayo-Belwa Local Government Area of Adamawa State, Nigeria. Dutse Journal of Pure and Applied Sciences, 8(3b), 15-24. https://doi.org/10.4314/dujopas.v8i3b.2 |
||||
Okeyode, I. C., Oladotun, I. C, , Alatise, V. B., Bada, S., Makinde, V., Akinboro, F. G., Mustapha, A. O., & Al-Azmi, D. (2019). Indoor gamma dose rates in the high backgroundradiation area of Abeokuta, South Western Nigeria. Journal of Radiation Research and AppliedSciences, 12(1), 72-77. https://doi.org/10.1080/16878507.2019.1594097 |
||||
Reuben, J. S., Gusau, M. B., Ibrahim, U., Yusuf, S. D., & Garba, N. N. (2023). Offsite Dose Assessment to the Public from Residual Radioactivity due to Mining Activities in Adamawa State, Nigeria. Journal of Radiation and Nuclear Applications, 8(1), 65-72. https://doi.org/10.18576/jrna/080110 |
||||
Sangari, D. U., & Fanen, N. P. (2011). The perceived effects of solid waste on human health in Keffi, Nigeria. NSUK Journal of Science &Technology, 1(1&2), 195-198. | ||||
Shahbazi-Gahrouei, D., Gholami, M. &Setayandeh, S. (2013). A review on natural background radiation. Advances in Biomedical Resources, 2, 65 https://doi.org/10.4103/2277-9175.115821 |
||||
Soja, R. J., Gusau, M. B., Ibrahim, U., Yusuf, S. D., & Garba, N. N. (2023). Statistical Analysis of Naturally Occurring Radionuclides arising from Mining Activities in Adamawa State, Nigeria. Journal of Radiation and Nuclear Applications, 8(1), 73-79. https://doi.org/10.18576/jrna/080111 |
||||
Ugbede, F. O., & Benson, I. D. (2018). Assessment of outdoor radiation levels and radiological health hazards in Emene Industrial Layout of Enugu State, Nigeria. International Journal of Physical Sciences,13(20),265-272. https://doi.org/10.5897/IJPS2018.4763 |
||||
Ugbede, F. O., & Echeweozo, E. O. (2017). Estimation of annual effective dose and excess lifetime cancer risk from background ionizing radiation levels within and around quarry site in Okpoto-Ezillo, Ebonyi State, Nigeria. Journal of Environment and Earth Science, 7(12), 74-79. | ||||
United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (2010). Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation 2008 report, volume I: Report to the general assembly, with scientific annexes A and B-sources. United Nations. | ||||
United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (2000). UNSCEAR 1185 2000 Report to the General Assembly with Scientific Annexes Volume I (New York: United Nations) 1186. | ||||
UNSCEAR (2000). Effects of ionizing radiation. United Nations, New York. Pp. 453-487. | ||||
Yani, L. S., Avwiri , G. O., & Ononugbo , C. P. (2023). Radiological safety assessment of agricultural soil within the bitumen belt of Ondo State Nigeria, Using RESRAD-ONSITE and RESRAD-BIOTA Codes. Archives of Current Research International, 23(7), 108-122. https://doi.org/10.9734/acri/2023/v23i7597 |
||||
Yusuf, S. D., Soja, R. J., & Umar, I. (2022). Radiological Dose assessment to the public from mining activities in Adamawa State, Nigeria. Journal of Radiation and Nuclear Applications, 7(3), 33-40. https://doi.org/10.18576/jrna/070306 |