ISSN: 2756-6684
Model: Open Access/Peer Reviewed
DOI: 10.31248/AJPS
Start Year: 2018
Email: ajps@integrityresjournals.org
https://doi.org/10.31248/AJPS2025.113 | Article Number: 4B86DE3F1 | Vol.6 (3) - June 2025
Received Date: 21 March 2025 | Accepted Date: 08 May 2025 | Published Date: 30 June 2025
Authors: Akintola A. Sarah* , Ehwarieme O. Favour and Oluwaseyi Olora
Keywords: Cassava starch, Graft polymerisation, acrylamide, Rheological properties, drilling fluids, shear-thinning.
Modified starch has gained popularity in recent years due to the availability of starch. GRAFT POLYMERIZATION is one of the ways to improve the properties of starch. Starch was obtained by the process of wet milling from four genotypes of Cassava tubers (TMS 96/1632, TMS 98/0581, TMS 07/ 0593 and TMS 01/1371), assigned as A, B, C, and D, respectively, were grafted with PAM and synthesized by polymerization method. Potassium Persulfate (PPS) was used as an initiator, with ethanol-water solution used to remove the homopolymer ACRYLAMIDE (PAM). The starch-grafted copolymer was characterised by Fourier transform infrared spectroscopy. From the result, it was observed that the FTIR spectra for the four starches grafted onto Polyacrylamide Monomer showed the presence of PS-g copolymer with new absorption bands in the range of 1644 – 1654 cm-1, which indicates a primary amide group in the polyacrylamides. The DRILLING FLUIDS treated with the PS-g copolymer showed mud weights between 8.6 – 9.0, with genotype D S-g-PA copolymer presenting better RHEOLOGY PROPERTIES and fluid loss control. All DRILLING FLUIDS prepared with copolymerized starch exhibit SHEAR-THINNING and pseudoplastic properties.
Adewale, P., Yancheshmeh, M. S., & Lam, E. (2022). Starch modification for non-food, industrial applications: Market intelligence and critical review. Carbohydrate Polymers, 291, 119590. https://doi.org/10.1016/j.carbpol.2022.119590 |
||||
Akinade, A. E., Wilfred, O. C., & Akin-Taylor, A. M. (2018). Improving the rheological properties of drilling mud using local based materials. American Journal of Engineering Research, 7(9), 58-63. | ||||
Alderman, N. J., Gavignet, A., Guillot, D., & Maitland, G. C. (1988, October). High-temperature, high-pressure rheology of water-based muds. In SPE Annual Technical Conference and Exhibition? (pp. SPE-18035). SPE. https://doi.org/10.2523/18035-MS |
||||
Ali, I., Ahmad, M., & Ganat, T. (2022). Biopolymeric formulations for filtrate control applications in water-based drilling muds: A review. Journal of Petroleum Science and Engineering, 210, 110021. https://doi.org/10.1016/j.petrol.2021.110021 |
||||
Ali, I., Ahmad, M., & Lashari, N. (2024). Optimizing filtration properties of water based drilling mud systems using dually modified starch. Journal of Cleaner Production, 454, 142022. https://doi.org/10.1016/j.jclepro.2024.142022 |
||||
Davoodi, S., Al-Shargabi, M., Wood, D. A., Minaev, K. M., & Rukavishnikov, V. S. (2024). Modified-starch applications as fluid-loss reducers in water-based drilling fluids: A review of recent advances. Journal of cleaner production, 434, 140430. https://doi.org/10.1016/j.jclepro.2023.140430 |
||||
Dike, H. N., Kolade, G. O., Adewumi, C. N., Adewumi, O. C. D. N., & Olaniyan, D. D. (2024, August). Evaluating the effect of unmodified and modified starch (EDTA-DSD) as fluid-loss control additives in locally-sourced bentonite water-based drilling mud. In SPE Nigeria Annual International Conference and Exhibition (p. D021S002R007). SPE. https://doi.org/10.2118/221762-MS |
||||
Elkatatny, S. (2019, March). Assessing the effect of micronized starch on rheological and filtration properties of water-based drilling fluid. In SPE Middle East Oil and Gas Show and Conference (p. D031S034R003). SPE. https://doi.org/10.2118/194965-MS |
||||
Lele, V. V., Kumari, S., & Niju, H. (2018). Syntheses, characterization and applications of graft copolymers of sago starch-A review. Starch‐Stärke, 70(7-8), 1700133. https://doi.org/10.1002/star.201700133 |
||||
Lele, V., & Kumari, S. (2021). Synthesis and characterization of graft copolymer of sago starch-g-poly (acrylamide) using potassium persulphate initiator. Journal of Scientific Research, 65(2), 92-96. https://doi.org/10.37398/JSR.2021.650218 |
||||
McKay, R. M., De Santis, L., Kulhanek, D. K., Ash, J. L., Beny, F., Browne, I. M., Cordeiro de Sousa, I. M., Cortese, G., Dodd, J. P., Esper, O., Gales, J. A., Harwood, D. M., Ishino, S., Keisling, B. A., Kim, S., Kim, S., Laberg, J. S., Leckie, R. M., Müller, J., Patterson, Molly O., Romans, B. W., Romero, O. E., Sangiorgi, F., Seki, O., Shevenell, A., Singh, S. M., Sugisaki, S. T., van de Flierdt, T., van Peer, T. E., Xiao, W., & Xiong, Z. (2019). IODP Expedition 374 Moisture and Density. International Ocean Discovery Program. Retrieved from https://doi.org/10.5281/zenodo.6515785 https://doi.org/10.14379/iodp.proc.374.101.2019 |
||||
Merle, D. B. R., Ladret, M., Lambin, A. D., Coudevylle, J. L., & Dobrogoszcz, E. (2000). Starch composition with fixed nitrogen content and viscosity level, containing at least one cationic starch component, is used as paper-making additive different from standard mass additive, or as water treatment additive. Retrieved from https://patents.google.com/patent/ FR2810042A1/en. | ||||
Nawaz, H., Waheed, R., Nawaz, M., & Shahwar, D. (2020). Physical and chemical modifications in starch structure and reactivity. In Chemical properties of starch. IntechOpen. https://doi.org/10.5772/intechopen.88870 |
||||
Nemțanu, M. R., Brașoveanu, M., Pincu, E., & Meltzer, V. (2022). Water-soluble starch-based copolymers synthesized by electron beam irradiation: Physicochemical and functional characterization. Materials, 15(3), 1061. https://doi.org/10.3390/ma15031061 |
||||
Okafor, M. N., & Evers, J. F. (1992, March). Experimental comparison of rheology models for drilling fluids. In SPE Western Regional Meeting (pp. SPE-24086). SPE. https://doi.org/10.2118/24086-MS |
||||
Omotioma, M., Ejikeme, P. C. N., & Ume, J. I. (2015). Improving the rheological properties of water based mud with the addition of cassava starch. IOSR Journal of Applied Chemistry, 8(8), 70-73. | ||||
Ricky, E., Mpelwa, M., Wang, C., Hamad, B., & Xu, X. (2022). Modified corn starch as an environmentally friendly rheology enhancer and fluid loss reducer for water-based drilling mud. SPE Journal, 27(02), 1064-1080. https://doi.org/10.2118/209195-PA |
||||
Sanders, J. P., M., Goense, D., Dun, D. (2005). Processing of cassava. https://www.wur.nl/en/publication-details.htm? publicationId=c6518c0a-6cdc-402c-a8f7-1bfe0803a01e. | ||||
Soto, D., León, O., Urdaneta, J., Muñoz-Bonilla, A., & Fernández-García, M. (2020). Modified starch as a filter controller in water-based drilling fluids. Materials, 13(12), 2794. https://doi.org/10.3390/ma13122794 |
||||
Sulaimon, A. A., Akintola, S. A., Mohd Johari, M. A. B., & Isehunwa, S. O. (2021). Evaluation of drilling muds enhanced with modified starch for HPHT well applications. Journal of Petroleum Exploration and Production, 11, 203-218. https://doi.org/10.1007/s13202-020-01026-9 |
||||
Weber, M. E., Raymo, M. E., Peck, V. L., Williams, T., Armbrecht, L., Bailey, I., Brachfeld, S., Cardillo, F. G., Du, Z., Fauth, G., García, M., Glüder, A., Guitard, M., Gutjahr, M., Hemming, S. R., Hernández‐Almeida, I., Hoem, F. S., Hwang, J. H., Iizuka, M., Kato, Y., Kenlee, B., Martos, Y M., Mello, A. D., O'Connell, S., Perez, L. F., Reilly, B. T., Ronge, T. A., Seki, O., Tauxe, L., Tripathi, S., Warnock, J., Zheng, X. (2021). IODP Expedition 382 Moisture and Density. International Ocean Discovery Program Retrieved from https://doi.org/10.5281/zenodo. 8263924 https://doi.org/10.14379/iodp.proc.382.101.2021 |
||||
Winckler, G., Lamy, F., Alvarez Zarikian, C. A., Arz, H. W., Basak, C., Brombacher, A., Esper, O., Farmer, J. R., Foucher McColl, N., Gottschalk, J., Herbert, L. C., Iwasaki, S., Lawson, V. J., Lembke‐Jene, L., Lo, L., Malinverno, E., Michel, É., Middleton, J. L., Moretti, S., Moy, C. M., Ravelo, A. C., Riesselman, C. R., Saavedra-Pellitero, M., Seo, I.,Singh, R. K., Smith, R. A., Souza, Alexandre, L., Stoner, Joseph S., Venancio, I. M., Wan, S., & Zhao, X. (2021). IODP Expedition 383 Moisture and Density. International Ocean Discovery Program Retrieved from https://doi.org/10.5281/zenodo.10291888 https://doi.org/10.14379/iodp.proc.383.101.2021 |
||||
Wysocki, S., Bielewicz, D., & Knez, D. (2005, March). Environmental Biodegradation and Drilling Performance of Water-based Polyampholyte Drilling Fluid. In SPE Health, Safety, Security, Environment, & Social Responsibility Conference-North America (pp. SPE-95640). SPE. https://doi.org/10.2118/95640-STU |
||||
Zhong, H., Gao, X., Zhang, X., Chen, A., Qiu, Z., Kong, X., & Huang, W. (2022). Minimizing the filtration loss of water-based drilling fluid with sustainable basil seed powder. Petroleum, 8(1), 39-52. https://doi.org/10.1016/j.petlm.2021.02.001 |