ISSN: 2705-2214
Model: Open Access/Peer Reviewed
DOI: 10.31248/JPHD
Start Year: 2018
Email: jphd@integrityresjournals.org
https://doi.org/10.31248/JPHD2024.141 | Article Number: B7E9B6FE1 | Vol.7 (1) - February 2025
Received Date: 13 November 2024 | Accepted Date: 27 January 2025 | Published Date: 28 February 2025
Authors: Azibadighi Walter* , Ogelemen Malachi Emakitor , Samuel Terungwa Abaya , Dayo Olufemi Akanbi , Utibe Efre Etim , Kevin Dofwah Nuhu , Ayodele A. Feyisara , Bio Belu Abaye , Chioma Dan-Nwafor , Abiodun Egwuenu , Segun Bello and Adeniyi Francis Fagbamigbe
An effective sub-national disease surveillance system contributes significantly to early detection, prevention and control of reemerging diseases such as Mpox. Nigeria recorded its first recognized Mpox outbreak in 2017 highlighting the resurgence of the disease in West Africa thirty-nine years after the eradication of smallpox. Despite reporting cases since 2017, its Mpox surveillance system has never been evaluated. This study, therefore, evaluated the Mpox surveillance system in Bayelsa State, Nigeria focusing on its key attributes and challenges. A cross-sectional study adopting the US CDC’s 2001 updated guidelines for evaluating public health surveillance systems was conducted. Mpox surveillance dataset from 2017 to 2023 was analyzed, conducted key informant interviews, and administered questionnaires to all twenty-eight surveillance officers in Bayelsa State Nigeria. Data were analyzed with IBM SPSS version 20. The mean age of participants was 43± 8 years with (82.1%) persons having ≤ 15 years of work experience. Mpox surveillance data analysis revealed males (63.3%) and individuals less than 20 years old (39.2%) were predominantly affected with a positivity rate of 32.8% and 21.7% pending/inconclusive results. In assessing system attributes, 96.4% of respondents indicated flexibility, 92.6% confirmed clarity in Mpox case definitions, and all participants highlighted the system’s acceptability and usefulness in resource allocation and decision-making. However, under- reporting and inadequate laboratory capacity were identified as major gaps by all key informants influencing the quality of data. While the Mpox surveillance system in Bayelsa State Nigeria possesses some good attributes, it is challenged by the above-stated critical gaps. Strengthening laboratory testing capacity, training surveillance officers in data management and mobility support for field surveillance are recommended to enhance Mpox surveillance at sub-national levels.
Amede, P. O., Umeokonkwo, C. D., Abege, S., Akawe, J., Derek, J., Adedire, E., & Balogun, M. S. (2022). Evaluation of malaria surveillance system in Benue State, Nigeria. Malaria Journal, 21(1), 1-14. https://doi.org/10.1186/s12936-022-04367-4 |
||||
Armstrong, G., Birkhead, G. S., Horan, J. M., Herrera, G., Lee, L. M., Milstein, R. L., Pertowski, C. A., & Waller, M. N. (2001). Updated Guidelines for Evaluating Public Health Surveillance Systems Recommendations from the Guidelines Working Group (Issue RR13). | ||||
Callaby, H., & Gordon, N. C. (2023). Mpox: evidence for strengthening and sustaining global surveillance. The Lancet Global Health, 11(7), e983-e984. https://doi.org/10.1016/S2214-109X(23)00241-3 |
||||
Chieloka, O. S., Bammani, I. M., & Amao, L. K. (2022). Descriptive epidemiology of the burden of human monkeypox in Nigeria: a retrospective review 2017-2021. Pan African Medical Journal One Health, 8. https://doi.org/10.11604/pamj-oh.2022.8.12.36024 |
||||
Djuicy, D. D., Bilounga, C. N., Esso, L., Mouiche, M. M. M., Yonga, M. G. W., Essima, G. D., Nguidjol, I. M. E., Anya, P. J. A., Dibongue, E. B. N., Etoundi, A. G. M., Eyangoh, S. I., Kazanji, M., & Njouom, R. (2024). Evaluation of the mpox surveillance system in Cameroon from 2018 to 2022: A laboratory cross-sectional study. BMC Infectious Diseases, 24(1), 949. https://doi.org/10.1186/s12879-024-09802-2 |
||||
Institut Pasteur's strategic plan (2022). Monkeypox: the epidemic potential will continue increasing, with diminishing herd immunity against viruses responsible for smallpox. The Research Journal. Retrieved from https://www.pasteur.fr/en/ home/research-journal/news/monkeypox-epidemic-potential-will-continue-increasing-diminishing-herd-immunity-against-viruses. | ||||
Karagoz, A., Tombuloglu, H., Alsaeed, M., Tombuloglu, G., AlRubaish, A. A., Mahmoud, A., Smajlović, S., Ćordić, S., Rabaan, A. A., & Alsuhaimi, E. (2023). Monkeypox (mpox) virus: Classification, origin, transmission, genome organization, antiviral drugs, and molecular diagnosis. Journal of Infection and Public Health, 16(4), 531-541. https://doi.org/10.1016/j.jiph.2023.02.003 |
||||
Laurenson-Schafer, H., Sklenovská, N., Hoxha, A., Kerr, S. M., Ndumbi, P., Fitzner, J., Almiron, M., de Sousa, L. V., Briand, S., Cenciarelli, O., Soledad Colombe S, Doherty, M., Fall, I. S., García-Calavaro, C., Haussig, J. M., Kato, M, Mahamud, A. R., Morgan, O. W. Pierre Nabeth, P., Naiene, J. D., Navegantes, W. A., Ogundiran, O., Okot, C., Pebody, R., Matsui, T., Ramírez, H. L-G., Smallwood, C., Tasigchana, R. F. P., Vaughan, A. M., Williams, G. S., Mala, M. O., Lewis, R. F., Pavlin, B. I., & de Waroux, O. L. P. (2023). Description of the first global outbreak of mpox: an analysis of global surveillance data. The Lancet Global Health, 11(7), e1012-e1023. https://doi.org/10.1016/S2214-109X(23)00198-5 |
||||
NCDC (2019). National Monkeypox Public Health Response Guidelines. | ||||
NCDC (2024). October Mpox Situation Report. | ||||
Ogoina, D. I., Etebu, N., & Ihekweazu, C. (2019). The 2017 human monkeypox outbreak in Nigeria-Report of outbreak experience and response in the Niger Delta University Teaching Hospital, Bayelsa State, Nigeria. https://doi.org/10.1371/journal.pone.0214229. https://doi.org/10.1371/journal.pone.0214229 |
||||
Ogoina, D., & Yinka-Ogunleye, A. (2022). Sexual history of human monkeypox patients seen at a tertiary hospital in Bayelsa, Nigeria. International Journal of STD & AIDS, 33(10), 928-932. https://doi.org/10.1177/09564624221119335 |
||||
Ogoina, D., Izibewule, J. H., Ogunleye, A., Ederiane, E., Anebonam, U., Neni, A., Oyeyemi, A., Etebu, E. N., & Ihekweazu, C. (2019). The 2017 human monkeypox outbreak in Nigeria-report of outbreak experience and response in the Niger Delta University Teaching Hospital, Bayelsa State, Nigeria. PloS one, 14(4), e0214229. https://doi.org/10.1371/journal.pone.0214229 |
||||
Olaleke, O., Okesanya, O., Abioye, S., Othoigbe, M., Matthew, E., Emery, M., Isaiah, A., Odugbile, T., Adebayo, B., & Lucero- Prisno III, D. (2022). The forms, challenges and strength of the monkeypox surveillance system in Nigeria. Annals of Health Research, 8(4), 269-276. https://doi.org/10.30442/ahr.0804-03-178 |
||||
Olawade, D. B., Wada, O. Z., Fidelis, S. C., Oluwole, O. S., Alisi, C. S., Orimabuyaku, N. F., & David-Olawade, A. C. (2024). Strengthening Africa's response to Mpox (monkeypox): insights from historical outbreaks and the present global spread. Science in One Health, 3, 100085. https://doi.org/10.1016/j.soh.2024.100085 |
||||
Riser, A. P., Hanley, A., Cima, M., Lewis, L., Saadeh, K., Alarcón, J., Finn, L., Kim, M., Adams, J., Holt, D., Feldpausch, A., Pavlick, J., English, A., Smith, M., Rehman, T., Lubelchek, R., Black, S., Collins, M., Mounsey, L., Anne Guagliardo, S. J. (2022). MMWR, Epidemiologic and Clinical Features of Mpox-Associated Deaths - United States, May 10, 2022-March 7, 2023. https://doi.org/10.15585/mmwr.mm7215a5 |
||||
Roper, R. L., Garzino-Demo, A., Del Rio, C., Bréchot, C., Gallo, R., Hall, W., Esparza, J., Reitz, M., Schinazi, R.F., Parrington, M., & McFadden, G. (2023). Monkeypox (Mpox) requires continued surveillance, vaccines, therapeutics and mitigating strategies. Vaccine, 41(20), 3171-3177. https://doi.org/10.1016/j.vaccine.2023.04.010 |
||||
Upadhayay, S., Arthur, R., Soni, D., Yadav, P., Navik, U. S., Singh, R., Gurjeet Singh, T., & Kumar, P. (2022). Monkeypox infection: The past, present, and future. In International Immunopharmacology (Vol. 113). https://doi.org/10.1016/j.intimp.2022.109382 |
||||
Elsevier B. V., Visa, T. I., Ajumobi, O., Bamgboye, E., Ajayi, I. O., & Nguku, P. (2020). Evaluation of malaria surveillance system in Kano State, Nigeria, 2013-2016. Infectious Diseases of Poverty, 9(1), 1-9. https://doi.org/10.1186/s40249-020-0629-2 |
||||
WHO (2018). Monkeypox - Nigeria. Disease Outbreak News. https://www.who.int/emergencies/disease-outbreak- news/item/ 05-october-2018-monkeypox-nigeria-en. | ||||
WHO (2022). Surveillance, case investigation and contact tracing for Monkeypox. Interim Guidance. https://www.who.int/ publications/i/item/WHO-MPX-Surveillance-2022.4. | ||||
WHO (2023). Multi-country outbreak of Mpox. External Situation Report 28. | ||||
WHO (2024). 2022-24 Mpox (Monkeypox) Outbreak: Global Trends. https://worldhealthorg.shinyapps.io/mpx_global/ | ||||
Zavuga, R., Migisha, R., Gonahasa, D. N., Kadobera, D., Kwesiga, B., Okello, P. E., Bulage, L., Aceng, F.L., Kayiwa, J., Makumbi, I., & Ario, A. R. (2023). Timeliness and completeness of monthly disease surveillance data reporting, Uganda, 2020-2021. Pan African Medical Journal, 46(3), 06. https://doi.org/10.11604/pamj.2023.46.3.40557 |