ISSN: 2705-2214
Model: Open Access/Peer Reviewed
DOI: 10.31248/JPHD
Start Year: 2018
Email: jphd@integrityresjournals.org
https://doi.org/10.31248/JPHD2025.147 | Article Number: 8385252F2 | Vol.7 (2) - April 2025
Received Date: 26 February 2025 | Accepted Date: 21 April 2025 | Published Date: 30 April 2025
Authors: Tochukwu Fortunetus OBIALIGWE* , Julius Olaniyi AIYEDUN , Oladapo Oyedeji OLUDAIRO , Elizabeth TANIMU , Iranyang Bazon UKO and Kingsley Chidinma EKECHUKWU
Keywords: prevalence, Taraba State, Abattoirs, Bovine, Mycobacterium bovis
Bovine tuberculosis is a serious zoonotic disease caused by Mycobacterium bovis and other members of the Mycobacterium tuberculosis complex (MTBC). The disease affects mainly cattle but can also affect humans and other domestic and wild mammals. The disease poses serious health risks to humans and livestock. The study investigated the prevalence of bovine tuberculosis in cattle slaughtered in abattoirs in Taraba State, Nigeria. The study was conducted between February and May 2023. The study adopted a cross-sectional design. The study was conducted in the Jalingo, Bali and Wukari abattoirs, representing Taraba North, Taraba Central, and Taraba South senatorial zones, respectively, selected based on the number of cattle slaughtered daily. A systematic random sampling technique was used for cattle selection, and the lungs of 400 slaughtered cattle were sampled. A proportionate distribution based on the abattoir’s slaughter capacity was used, 80% (320) of the samples from Jalingo abattoir and 10% (40) each to Bali and Wukari slaughter slabs. Acid-fast bacilli detection and polymerase chain reaction techniques were the laboratory techniques that were utilised in this study. Bovine tuberculosis was found to have a prevalence of 1.5% (6/400) in cattle slaughtered in Taraba State through acid-fast bacilli detection. Out of the six tissue samples that tested positive for acid-fast bacilli, 2(33.3%) samples were identified as Mycobacterium tuberculosis complex (MTBC), and 1(16.7%) sample was identified as Mycobacterium bovis through Polymerase Chain Reaction (PCR) analysis. These findings highlighted the presence of bovine tuberculosis in slaughtered cattle in Taraba State, with a considerable proportion of positive cases detected. These findings pose a risk to food safety in Taraba State, with potential for zoonotic transmission.
Adane, A., Damena, M., Weldegebreal, F., & Mohammed, H. (2020). Prevalence and associated factors of tuberculosis among adult household contacts of smear positive pulmonary tuberculosis patients treated in public health facilities of Haramaya district, Oromia region, eastern Ethiopia. Tuberculosis Research and Treatment, 2020, Article 6738532. https://doi.org/10.1155/2020/6738532 |
||||
Ahmad, I., Kudi, C. A., Abdulkadir, A. I., & Saidu, S. N. A. (2017). Occurrence and distribution of bovine TB pathology by age, sex, and breed of cattle slaughtered in Gusau Abattoir, Zamfara State, Nigeria. Tropical Animal Health and Production, 49, 583-589. https://doi.org/10.1007/s11250-017-1232-9 |
||||
Aliyu, M. M., Adamu, J. Y., & Bilyaminu, Y. A. (2009). Current prevalence of tuberculous lesions among slaughtered cattle in northeastern states of Nigeria. Revue d'Élevage et de Médecine Vétérinaire des Pays Tropicaux, 62, 13-16. https://doi.org/10.19182/remvt.10088 |
||||
Alvarez, J., Perez, A., Marques, S., Bezos, J., Grau, A., de la Cruz, M., Romero, B., Saez, J. L., del Rosario Esquivel, M., del Carmen Martinez, M., Minguez, O., de Juan, L. & Dominguez, L. (2014). Risk factors associated with negative in-vivo diagnostic results in bovine tuberculosis-infected cattle in Spain. BMC Veterinary Research, 10, 14. https://doi.org/10.1186/1746-6148-10-14 |
||||
Awah-ndukum, J., Kudi, A. C., Bradley, G., Ane-anyangwe, I., Titanji, V. P. K., Fon-tebug, S., & Tchoumboue, J. (2012). Prevalence of bovine tuberculosis in cattle in the highlands of Cameroon based on the detection of lesions in slaughtered cattle and tuberculin skin tests of live cattle. Veterinarni Medicina, 57, 59-76. https://doi.org/10.17221/5252-VETMED |
||||
Biet, F., Boschiroli, M. L., Thorel, M. F., & Guilloteau, L. A. (2005). Zoonotic aspects of Mycobacterium bovis and Mycobacterium avium‐intracellulare complex (MAC). Veterinary Research, 36, 411-436. https://doi.org/10.1051/vetres:2005001 |
||||
Bikom, P. M., Nwankwo, I. O., Ogugua, J. A., Njoga, E. O., Okafor, S. C., Nwanta, J. A., & Oboegbulem, S. I. (2021). Prevalence and distribution of bovine tuberculosis among slaughtered cattle in Cross River State, Nigeria. Animal Research International, 18, 3977-3989. | ||||
Brosch, R., Gordon, S. V., Marmiesse, M., Brodin, P., Buchrieser, C., Eiglmeier, K., Garnier, T., Gutierrez, C., Hewinson, G., Kremer, K., Parsons, L. M., Pym, A.S., Samper, S., Van Soolingen, D., & Cole, S.T. (2002). A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proceedings of the National Academy of Sciences, 99, 3684-3689. https://doi.org/10.1073/pnas.052548299 |
||||
Cadmus, S. I. B., Olugasa, B. O., & Ogundipe, G. A. T. (1999). The prevalence and zoonotic importance of tuberculosis in Ibadan. In Proceedings of the 36th Annual Conference of the Nigerian Veterinary Medical Association (pp. 8-10). Kaduna, Nigeria. | ||||
Cadmus, S. I., Yakubu, M. K., & Magaji, A. A. (2010). Mycobacterium bovis, but also M. africanum present in raw milk of pastoral cattle in north‐central Nigeria. Tropical Animal Health and Production, 42, 1047-1048. https://doi.org/10.1007/s11250-010-9533-2 |
||||
Cantres-Fonseca, O. J., Rodriguez-Cintrón, W., Olmo-Arroyo, F. D., & Baez-Corujo, S. (2018). Extra pulmonary tuberculosis: An overview. In N. S. Chauhan (Ed.), Role of microbes in human health and diseases (pp. 1-16). IntechOpen. https://doi.org/10.5772/intechopen.81322 |
||||
Chitale, P., Lemenze, A., Forgarty, E. C., Shah, A., Grady, C., Odom-Mabey, A. R., Johns, W. E., Yang, J. H., Eren, M., Brosch, R., & Kumar, P. (2022). A comprehensive update to the Mycobacterium tuberculosis H37Rv reference genome. Nature Communications, 13, 1-12. https://doi.org/10.1038/s41467-022-34853-x |
||||
Ejeh, E. F., Adeshokan, H. K., Raji, M. A., Bello, M., Musa, J. A., Kudi, A. C., & Cadmus, S. I. B. (2014). Current status of bovine tuberculosis in Otukpo, Nigeria. Journal of Animal Production Advances, 4, 501-507. https://doi.org/10.5455/japa.20140821112921 |
||||
Farrel, D., Crisper, J., & Gordon, S. V. (2019). Updated functional annotation of the Mycobacterium bovis AF2122/97 reference genome. Access Microbiology, 2, 1-3. https://doi.org/10.1101/757823 |
||||
Garnier, T., Eiglmeier, K., Camus, J. C., Medina, N., Mansoor, H., Pryor, M., Duthoy, S., Grondin, S., Lacroix, C., Monsempe, C., Simon, S., Harris, B., Atkin, R., Doggett, J., Mayes, R., Keating, L., Wheeler, P. R., Parkhill, J., Barrell, B. G., Cole, S. T., Gordon, S. V., & Hewinson, R. G. (2003). The complete genome sequence of Mycobacterium bovis. Proceedings of the National Academy of Sciences, 100(13), 7877-7882. https://doi.org/10.1073/pnas.1130426100 |
||||
Gelalcha, B. D., Aboma, Z., & Gobena, A. (2019). Tuberculosis caused by Mycobacterium bovis in a sheep flock colocated with a tuberculous dairy cattle herd in central Ethiopia. Journal of Veterinary Medicine, Volume 2019, Article ID 8315137, 6 pages https://doi.org/10.1155/2019/8315137 |
||||
Grange, J. M. (2001). Mycobacterium bovis infection in human beings. Tuberculosis, 81(1-2), 71-77. https://doi.org/10.1054/tube.2000.0263 |
||||
Itah, A. Y., & Udofia, S. M. (2005). Epidemiology and endemicity of pulmonary tuberculosis (PTB) in Southeastern Nigeria. Southeast Asian Journal of Tropical Medicine & Public Health, 36(2), 317-323. | ||||
Jenkins, A. O., Cadmus, S. I. B., Venter, E. H., Pourcel, C., Hauk, Y., Vergnaud, G., & Godfroid, J. (2011). Molecular epidemiology of human and animal tuberculosis in Ibadan, Southwestern Nigeria. Veterinary Microbiology, 151(1-2), 139-147. https://doi.org/10.1016/j.vetmic.2011.02.037 |
||||
Kapalamula, T. F., Kawonga, F., Shawa, M., Chizimu, J., Thapa, J., Nyenje, M. E., Mkakosya, R. S., Hayashida, K., Gordon, S., Nakajima, C., Munyeme, M., Hang'ombe, B. M., & Suzuki, Y. (2023). Prevalence and risk factors of bovine tuberculosis in slaughtered cattle, Malawi. Heliyon, 9(2), e13647. https://doi.org/10.1016/j.heliyon.2023.e13647 |
||||
Krajewska, M., Załuski, M., Zabost, A., Orłowska, B., Augustynowicz-Kopeć, E., Anusz, K., Lipiec, M., Weiner, M., & Szulowski, K. (2015). Tuberculosis in antelopes in a zoo in Poland-Problem of Public Health. Polish Journal of Microbiology, 4, 405-407. https://doi.org/10.5604/17331331.1185242 |
||||
Lawan, F. A., Ejeh, E. F., Waziri, A., Kwanashie, C. N., Kadima, K. B., & Kazeem, H. M. (2020). Prevalence of Tuberculosis in Cattle Slaughtered at Maiduguri Central Abattoir, Nigeria. Sahel Journal of Veterinary Sciences, 17(3), 14-21. https://doi.org/10.54058/saheljvs.v17i3.167 |
||||
Moran, J. (2005). Tropical dairy farming: Feeding management for smallholder dairy farmers in the humid tropics (pp. 209-218). Landlink Press. https://doi.org/10.1071/9780643093133 |
||||
Musawa, A. I., Magaji, A. A., Salihu, M. D., Kudi, A. C., Junaidu, A. U., Bello, M. B., Garba, B., Yakubu, Y., Abdullahi, S. M., Sidi, S., & Lawali, Y. B. (2021). Prevalence and molecular identification of Mycobacteria isolated from animals slaughtered at Sokoto modern abattoir, Sokoto State, Nigeria. Sokoto Journal of Veterinary Sciences, 19(3), 217-224. https://doi.org/10.4314/sokjvs.v19i3.7 |
||||
National Population Commission (2006). Population and housing census, population distribution by states, LGAs and senatorial districts (Priority Table, Volume III, pp. 1-64). National Population Commission. Retrieved from https://nigerianstat.gov.ng/download/474 | ||||
Nwankwo, I. O., Onunkwo, J. I., & Onyema, C. V. (2019). Postmortem prevalence of fasciolosis and Contagious Bovine Pleuropneumonia (CBP) and economic losses in cattle at Nsukka abattoir, Nigeria. Animal Research International, 16(3), 3418-3426. | ||||
Nwanta, J. A., Umeononigwe, C. N., Abonyi, G. E., & Onunkwo, J. I. (2011). Retrospective study of bovine and human tuberculosis in abattoirs and hospitals in Enugu State, Southeast Nigeria. Journal of public health and epidemiology, 3(7), 329-336. | ||||
Obialigwe, T., Aiyedun, J., Oludairo, O., Kehinde, O., Uko, I., & Tanimu, E. (2024). Retrospective study on bovine tuberculosis and evaluation of abattoir personnel's knowledge and preventive practices in Taraba State. Microbes and Infectious Diseases, (in press). https://doi.org/10.21608/mid.2024.296068.1987 |
||||
Oragwa, A. O., Oziegbe, S. D., Patrobas, M. N., Dunka, H. I., Buba, D. M., & Gurumyen, Y. G. (2017). Prevalence of tuberculosis among livestock slaughtered for human consumption: A Jos abattoir based study. Saudi Journal of Medical and Pharmaceutical Sciences, 3, 777-783. | ||||
QIAGEN (2016). QIAamp® DNA Mini and Blood Mini Handbook (5th ed.). QIAGEN. Retrieved October 27, 2023, from https://www.qiagen.com | ||||
Ramos, D. F., Silva, P. E. A., & Dellagostin, O. A. (2015). Diagnosis of bovine tuberculosis: review of main techniques. Brazilian Journal of Biology, 75(4), 830-837. https://doi.org/10.1590/1519-6984.23613 |
||||
Torell, R., Bruce, B., Kvasnicka, B., & Conley, K. (2003). Methods of determining age of cattle. Cattle Producer's Library: CL712. University of Nevada, Reno, NV. Retrieved 4 July 2013 from https://www.coffey.k-state.edu/crops-livestock/livestock/Determining%20Cattle%20Age.pdf. | ||||
Shitaye, J. E., Getahun, B., Alemayhu, T., Skoric, M., Treml, F., & Fictum, P., Vrbas, V., & Pavlik, I. (2006). A prevalence study of bovine tuberculosis by using abattoir meat inspection and tuberculin skin testing data, histopathological, IS6110 PCR examination of tissues with tuberculous lesions in cattle in Ethiopia. Veterinary Medicine, 51(11), 512-522. https://doi.org/10.17221/5585-VETMED |
||||
Smith, N. H., Gordon, S. V., de la Rua-Domenech, R., Clifton-Hadley, R. S., & Hewinson, R. G. (2006). Bottlenecks and broomsticks: the molecular evolution of Mycobacterium bovis. Nature Reviews Microbiology, 4(9), 670-681. https://doi.org/10.1038/nrmicro1472 |
||||
Spositto, F. L. E., Campanerut, P. A. Z., Ghiraldi, L. D., Leite, C. Q. F., Hirata, M. H., Hirata, R. D. C., Siqueira, V. L. D., & Cardoso, R. F. (2014). Multiplex-PCR for differentiation of Mycobacterium bovis from Mycobacterium tuberculosis complex. Brazilian Journal of Microbiology, 45, 841-843. https://doi.org/10.1590/S1517-83822014000300012 |
||||
Taraba State Government (2022). Taraba State Government at a Glance. Retrieved from https://www.tarabastate.gov.ng/ about/2839002 | ||||
Taraba AIDS Control Agency (2018, December 28). Taraba state ranks 2nd on HIV/AIDS infection in Nigeria. Health - Business Day. https://businessday.ng/health/article/taraba-state-ranks-2nd-on-hiv-aids-infection-in-nigeria. | ||||
Taylor, G. M., Worth, D. R., Palmer, S., Jahans, K., & Hewinson, R. G. (2007). Rapid detection of Mycobacterium bovis DNA in cattle lymph nodes with visible lesions using PCR. BMC Veterinary Research, 3, Article 12. https://doi.org/10.1186/1746-6148-3-12 |
||||
Thrusfield, M. (2007). Veterinary epidemiology (3rd edition). Blackwell Science Ltd. | ||||
Wangoo, A., Johnson, L., Gough, J., Ackbar, R., Inglut, S., Hicks, D., Spencer, Y., Hewinson, G., & Vordermeier, M. (2005). Advanced granulomatous lesions in Mycobacterium bovis-infected cattle are associated with increased expression of type I procollagen, gamma delta (WC1+) T cells and CD 68+ cells. Journal of Comparative Pathology, 133(4), 223-234. https://doi.org/10.1016/j.jcpa.2005.05.001 |
||||
World Health Organization (2022). Global tuberculosis report 2022. World Health Organization. https://www.who.int/teams/ global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022. | ||||
Yahyaoui-Azami, H., Aboukhassib, H., Bouslikhane, M., Berrada, J., Rami, S., Reinhard, M., Gagneux, S., Feldmann, J., Borrell, S., & Zinsstag, J. (2017). Molecular characterisation of bovine tuberculosis strains in two slaughterhouses in Morocco. BMC Veterinary Research, 13, article number 272. https://doi.org/10.1186/s12917-017-1165-6 |