JOURNAL OF PUBLIC HEALTH AND DISEASES
Integrity Research Journals

ISSN: 2705-2214
Model: Open Access/Peer Reviewed
DOI: 10.31248/JPHD
Start Year: 2018
Email: jphd@integrityresjournals.org


Simulating the transmission dynamics and control of typhoid fever in Ibadan, Nigeria

https://doi.org/10.31248/JPHD2020.057   |   Article Number: 654A622E2   |   Vol.3 (1) - February 2020

Received Date: 29 January 2020   |   Accepted Date: 19 February 2020  |   Published Date: 28 February 2020

Authors:  Omolola A. Oladipupo and Olaniran J. Matthew*

Keywords: treatment., Isolation, SIIcR model, typhoid, vaccination.

This study aims to assess transmission dynamics of typhoid and simulate effects of treatment, isolation and vaccination in reducing the burden of typhoid fever in Ibadan metropolis, Nigeria. Secondary data of the Integrated Disease Surveillance Response on reported typhoid fever cases for 2010 to 2017 period in Ibadan South-East Local Government Area, Oyo State, Nigeria were used to achieve the set-out objectives. The study adapted the Susceptible-Infected-Carrier-Recovered (SIIcR) model to simulate effects of the three preventive and control strategies on typhoid fever transmission. Typhoid fever cases were most rampant among the age groups 20 to 40 years (29.0% infected) and > 40 years (35% asymptomatic carriers and 45.0% death) and the least in age group 0 to 28 days (0.22% infected and no death case). A decreasing trend in typhoid fever cases (56 cases per year) was observed which was attributed to improved functional health facilities and their effective utilization. Significant seasonal variation in typhoid infections was found with the highest reported cases at the start of wet (April) and dry (November) seasons. The SIIcR model simulations suggested likelihood of typhoid fever epidemic within two weeks in the community if no prevention and intervention measures were put in place. Major reduction in the carriers’ population significantly reduced the number of infected class and suggested disease-free population within a season of typhoid epidemic (100 days). Model simulations suggested that vaccination and isolation significantly reduced the effect of infected and asymptomatic carrier populations at p<0.05 on the transmission dynamics of typhoid fever.

Abdullahi, U. B., Zainab, J. O., Rai, J. K., Gwani, M., & Gado, A. G. (2013). Effect of some atmospheric variables on malaria prevalence in Kebbi State, Nigeria. International Journal of Environment and Bioenergy, 8(1), 12-21.
 
Agbola, T., & Ojeleye, D. (2007). Climate change and food crop production in Ibadan, Nigeria. In 8th African Crop Science Society Conference, El-Minia, Egypt, 27-31 October 2007 (pp. 1423-1433). African Crop Science Society.
 
Akinyemi, K. O., Oyefolu, A. O. B., Mutiu, W. B., Iwalokun, B. A., Ayeni, E. S., Ajose, S. O., & Obaro, S. K. (2018). Typhoid fever: tracking the trend in Nigeria. The American Journal of Tropical Medicine and Hygiene, 99(3_Suppl), 41-47.
Crossref
 
Akinyemi, K. O., Smith, S. I., Oyefolu, A. B., & Coker, A. O. (2005). Multidrug resistance in Salmonella enterica serovar typhi isolated from patients with typhoid fever complications in Lagos, Nigeria. Public Health, 119(4), 321-327.
Crossref
 
Ameh, I. G., & Opara, W. E. K. (2004). Typhoid: a record of cases in Sokoto, Nigeria. Pakistan Journal of Biology Science, 7, 1177-1180.
Crossref
 
Antillón, M., Warren, J. L., Crawford, F. W., Weinberger, D. M., Kürüm, E., Pak, G. D., Marks, F., & Pitzer, V. E. (2017). The burden of typhoid fever in low-and middle-income countries: A meta-regression approach. PLoS neglected tropical diseases, 11(2), e0005376.
Crossref
 
Bhan, M., Bahl, R., & Bhatnagar, S. (2005). Typhoid and paratyphoid fever. Lancet, 366(9487), 749-762.
Crossref
 
Bhutta, Z. A. (2019). Integrating typhoid fever within the sustainable development goals: Pragmatism or Utopia? Clinical Infectious Diseases, 68(S1), S34-S41.
Crossref
 
Buckle, G. C., Walker, C. L. F., & Black, R. E. (2012). Typhoid fever and paratyphoid fever: systematic review to estimate global morbidity and mortality for 2010. Journal of Global Health, 2(1), 010401.
Crossref
 
Chamuchi, N. M., Sigey, J. K., Okello, J. A., & Okwoyo, J. M. (2014). SIICR model and simulation of the effects of carriers on the transmission dynamics of typhoid fever in KISII Town Kenya. The SIJ Transactions on Computer Science Engineering & its Applications (CSEA), 2(3), 109-116.
Crossref
 
Choo, K. E., Davis, T. M. E., Ismail, A., Ibrahim, T. T., & Ghazali, W. N. W. (1999). Rapid and reliable serological diagnosis of enteric fever: comparative sensitivity and specificity of Typhidot and Typhidot-M tests in febrile Malaysian children. Acta Tropica, 72(2), 175-183.
Crossref
 
Date, K. A., Bentsi-Enchill, A., Marks, F., & Fox, K. (2015). Typhoid fever vaccination strategies. Vaccine, 33, C55-C61.
Crossref
 
Diekmann, O., Heesterbeek, J. A. P., & Metz, J. A. (1990). On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations. Journal of Mathematical Biology, 28(4), 365-382.
Crossref
 
Dougan, G., & Baker, S. (2014). Salmonella enterica serovar Typhi and the pathogenesis of typhoid fever. Annual Review of Microbiology, 68, 317-336.
Crossref
 
Edward, S., & Nyerere, N. (2016). Modelling typhoid fever with education, vaccination and treatment. Engineering Mathematics, 1(1), 44-52.
 
González-Guzmán, J. (1989). An epidemiological model for direct and indirect transmission of typhoid fever. Mathematical Biosciences, 96(1), 33-46.
Crossref
 
Ibekwe, A. C., Okonko, I. O., Onunkwo, A. U., Donbraye, E., Babalola, E. T., & Onoja, B. A. (2008). Baseline Salmonella agglutinin titres in apparently healthy freshmen in Awka, South Eastern, Nigeria. Scientific Research and Essay, 3(9), 225-230.
 
Jeminiwa, O. R., Oyelowo, O. J., Ine, I. E., Oloketuyi, A. J., & Olaoti-Laaro, S. O. (2017). Waste Disposal Management Awareness among Some Selected Secondary School Teachers in Ibadan, Oyo State, Nigeria. International Journal of Applied Research and Technology, 6(11), 9-13.
Crossref
 
Jones, J. H. (2007). Notes on r0. California: Department of Anthropological Sciences. p. 19.
 
Joseph, C. A., & Palmer, S. R. (1989). Outbreaks of salmonella infection in hospitals in England and Wales 1978-87. British Medical Journal, 298(6681), 1161-1164.
Crossref
 
Kalajdzievska, D., & Li, M. Y. (2011). Modeling the effects of carriers on the transmission dynamics of infectious diseases. Mathematical Biosciences and Engineering, 3(8), 711-722.
Crossref
 
Khan, M. A., Parvez, M., Islam, S., Khan, I., Shafie, S., & Gul, T. (2015). Mathematical analysis of typhoid model with saturated incidence rate. Advanced Studies in Biology, 7(2), 65-78.
Crossref
 
Maskaly, K. J. (2003). Typhoid fever. Canadian Medical Association Journal, 169, 132-143.
 
Miriam, E. (2005). Degrees of choice: Class, race, gender and higher education. Trentham Books.
 
Mushayabasa, S. (2012). A simple epidemiological model for typhoid with saturated incidence rate and treatment effect. International Journal of Biological, Veterinary, Agricultural and Food Engineering, 6(6), 688-695.
 
Mutua, J. M., Barker, C. T., & Vaidya, N. K. (2017). Modeling impacts of socioeconomic status and vaccination programs on typhoid fever epidemics. Electronic Journal of Differential Equations, 24, 63-74.
 
Naresh, R., Pandey, S., & Misra, A. K. (2008). Analysis of a vaccination model for carrier dependent infectious diseases with environmental effects. Nonlinear Analysis: Modelling and Control, 13(3), 331-350.
Crossref
 
National Population Commission of Nigeria (NPC) (2016). National Population Commission of Nigeria - Current projected population of Nigerian States based on 1991 and 2006 national census. Abuja, Nigeria.
 
Nthiiri, J. K., Lawi, G. O., Akinyi, C. O., Oganga, D. O., Muriuki, W. C., Musyoka, M. J., Otieno, P. O., & Koech, L. (2016). Mathematical modelling of typhoid fever disease incorporating protection against infection. Journal of Advances in Mathematics and Computer Science, 14(1), 1-10.
Crossref
 
Nyerere, N., Mpeshe, S. C., & Edward, S. (2018). Modeling the Impact of Screening and Treatment on the Dynamics of Typhoid Fever. World Journal of Modelling and Simulation, 14(4), 298-306.
 
Ogunleye, A. O., Ajuwape, A. T. P., Alaka, O. O., & Adetosoye, A. I. (2013). Characterization of a salmonella enterica serotype pullorum isolated from a lizard co-habitating with poultry. African Journal of Microbiology Research, 7(14), 1215-1221.
Crossref
 
Ojetade, J. O. Adeoye, G. O., & Adegbenro, R. O. (2013). Variability of chemical propreties in an exhaustively cropped alfisol and their relationship with maize (Zea mays L.) yield. Journal of Agricultural Sciences and Policy Research, 3(1), 10-17.
 
Omame, A., Umana, R. A., Iheonu, N. O., & Chioma, S. (2015). On the existence of a stochastic model of typhoid fever. Mathematical Theory and Modeling, 5(8), 104-113.
 
Peter, O. J., Ibrahim, M. O., Akinduko, O. B., & Rabiu, M. (2017). Mathematical model for the control of typhoid fever. IOSR Journal of Mathematics, 13(14), 60-66.
Crossref
 
Pitzer, V. E., Bowles, C. C., Baker, S., Kang, G., Balaji, V., Farrar, J. J., & Grenfell, B. T. (2014). Predicting the impact of vaccination on the transmission dynamics of typhoid in South Asia: a mathematical modeling study. PLoS Neglected Tropical Diseases, 8(1), e2642.
Crossref
 
Roumagnac, P., Weill, F. X., Dolecek, C., Baker, S., Brisse, S., Chinh, N. T., Acosta, C. J., Farrar, J., Dougan, G., & Achtman, M. (2006). Evolutionary history of Salmonella typhi. Science, 314(5803), 1301-1304.
Crossref
 
Shukla, J. B., Goyal, A., Singh, S., & Chandra, P. (2014). Effects of habitat characteristics on the growth of carrier population leading to increased spread of typhoid fever: A model. Journal of Epidemiology and Global Health, 4(2), 107-114.
Crossref
 
Stanaway, J. D., Reiner, R. C., Blacker, B. F., Goldberg, E. M., Khalil, I. A., Troeger, C. E., Andrews, J.R., Bhutta, Z.A., Crump, J.A., Im, J. & Marks, F. (2019). The global burden of typhoid and paratyphoid fevers: A systematic analysis for the Global Burden of Disease Study 2017. The Lancet Infectious Diseases, 19(4), 369-381.
Crossref
 
Sun, C., & Hsieh, Y. H. (2010). Global analysis of an SEIR model with varying population size and vaccination. Applied Mathematical Modelling, 34(10), 2685-2697.
Crossref
 
Sur, D., Ali, M., Von Seidlein, L., Manna, B., Deen, J. L., Acosta, C. J., Clemens, J. D., & Bhattacharya, S. K. (2007). Comparisons of predictors for typhoid and paratyphoid fever in Kolkata, India. BMC Public Health, 7, Article number: 289.
Crossref
 
Takahashi, A., Spreadbury, J., & Scotti, J. (2010). Modeling the Spread of Tuberculosis in a Closed Population.
Link
 
Tilahun, G. T., Makinde, O. D., & Malonza, D. (2017). Modelling and optimal control of typhoid fever disease with cost-effective strategies. Computational and Mathematical Methods in Medicine, Volume 2017, Article ID 2324518, 16 pages.
Crossref
 
World Health Organization (WHO) (2009). Epidemiology. Global tuberculosis control: epidemiology, strategy, financing.
Link
 
Yi, N., Zhang, Q., Mao, K., Yang, D., & Li, Q. (2009). Analysis and control of an SEIR epidemic system with nonlinear transmission rate. Mathematical and Computer Modelling, 50(9-10), 1498-1513.
Crossref