Integrity Research Journals

ISSN: 2705-2214
Model: Open Access/Peer Reviewed
DOI: 10.31248/JPHD
Start Year: 2018

Investigation of the antibiotics susceptibility patterns and pathogenic potential of bacteria isolated from poultry wastes   |   Article Number: 5DDF4BE43   |   Vol.1 (3) - December 2018

Received Date: 01 December 2018   |   Accepted Date: 27 December 2018  |   Published Date: 31 December 2018

Authors:  B. O. Uba* , E. L. Okoye , I. S. Etoniru , D. K. Anene and S. Ogbuagu

Keywords: Antibiotic resistance, gastrointestinal tract, pathogenicity, poultry wastes, public health.

The antibiotic resistant patterns and pathogenic potential of bacteria isolated from poultry wastes were investigated in this study. A total of 20 samples of poultry wastes were collected from different sites of poultry houses in Uli, Ihiala Local Government Areas, Anambra State, Nigeria using sterile polythene bags. The pathogens were isolated and identified using streaking plating technique, biochemical characterization and API Identification System. The disc diffusion method and plasmid curing were used to determine the antibiotic resistant patterns and resistant gene location. The pathogenicity study involves orally or intraperitonially inoculation of 0.5 mL of the different bacterial pathogens into three months’ immuno - competent albino mice for two weeks; and rabbit ileal loop assay for enterotoxin production in five healthy adult rabbit for 18 to 24 hrs. The isolated pathogens were Staphylococcus aureus, E. coli, Pseudomonas aeruginosa, Clostridium, Salmonella, Shigella, V. cholerae and V. parahaemolyticus. The antibiotics sensitivity test revealed that the bacterial pathogens were most susceptible to ciprofloxacin, rifampicin, levofloxacin and most resistant to ceporex, amoxil, ampiclox and norfloxacin with significance in the Gram negative antibiotics sensitivity testing (P < 0.05), but no significance in the Gram antibiotics sensitivity positive testing (P > 0.05). 12.5% of the strains lost their antibiotic resistance plasmids marker after sodium dodecyl sulfate (SDS) mediated curing. The pathogenicity testing revealed that the intestine had the highest significant microbial count (9 log CFU/g x 105) and the liver recorded the least significant count (7 log CFU/g x105) compare to the control (inoculated with water) that had no count. The enterotoxin testing revealed that Staphylococcus aureus recorded the highest enterotoxin production (0.45 mL/cm) while Pseudomonas aeruginosa recorded the least (0.16 mL/cm). Thus, the test isolates have shown reasonable pathogenic potentials and hence proper enlightenment and sensitization of the public health problems associated with these wastes should be encouraged.

Abakpa, G. O., Umoh, V. J., Ameh, J. B., Yakubu, S. E., Kwaga, J. K. P., & Kamaruzaman, S. (2015). Diversity and antimicrobial resistance of Salmonella enterica isolated from fresh produce and environmental samples. Environmental Nanotechnology, Monitoring and Management, 3, 38-46.
Abbas, B. A., Khudor, M. H., & Idbeis, H. I. (2013). Investigation of the activity and pathogenicity of Staphylococcus aureus enterotoxin C by ligated ileal loop assay in rabbits. Basrah Journal of Veterinary Research, 12(2),104-112.
Alfa, M. I., Adje, D. B., Igboro, S. B., Oranusi, U. S., Dahunsi, S. O., & Akali, D. M. (2014). Assessment of bio fertilizer quality and health implications of anaerobic digestion effluent of cow dung and chicken droppings. Renewable Energy, 63, 681-686.
Bhunia, A. K. (2008). Food borne bacterial pathogen. Springer. Purdue University Lafayette USA. Pp. 125-134.
Cheesbrough, M. (2006). District laboratory practice in tropical countries. Part 2, 2nd edn. Cambridge University Press, New York USA. Pp. 38-70.
Clinical and Laboratory Standard Institute (CLSI) (2005). Performance standards for antimicrobial susceptibility testing, fifteenth informational supplement. Clinical and Laboratory Standard Institute, Wayne Pa M100 –S15 volume 25 no 1.
Everest, P. H., Goossens, H., Sibbons, P., Lloyd, D. R., Knutton, S., Leece, R., Ketley, J. M., & Williams, P. H. (1993). Pathological changes in the rabbit ileal loop model caused by Campylobacter jejuni from human colitis. Journal of Medical Microbiology, 38(5), 316-321.
Ezekoye, C. C., Amakoromo, E. R., & Ibiene, A. A. (2017). Laboratory – based bioremediation of hydrocarbon polluted Mangrove Swamp soil in the Niger Delta using poultry wastes. Microbiology Research Journal International, 19(2), 1-14.
Fontenot, J. P. (2000). Utilization of poultry litter as feed for beef cattle. Animal Residuals Management, 19, 2342-2352.
Ghaderpour, A., MohdNasori, K. N., Chew, L. L., Chong, V. C., Thong, K. L., & Chaj, L. C. (2014). Detection of multiple potentially pathogenic bacteria in Matang mangrove estuaries, Malaysia. Marine Pollution Bulletin, 83, 324-330.
Idahosa, I. B., Obueh, H. O., Aigbekaen, M. O., & Odesiri, E. A. (2017). Characterization of potential pathogenic bacterial isolates from urban and rural market dumpsites. International Journal of Microbiology and Biotechnology, 2(3), 129-134.
Kelleher, B. P., Leahy, J. J., Henihan, A. M., Dwyer, T. F., Sutton, D., & Leahy, M. J. (2002). Advances in poultry litter disposal technology. Bioresources Technology, 83(1), 27-36.
Khudor, M. H., Abbas, B. A., & Idbeis, H. I. (2012). Detection of enterotoxin genes of Staphylococcus aureus isolated from raw milk. Basrah Journal of Veterinary Research, 11(1), 254-263.
Kim, D. J., Lee, D. I., & Keller, J. (2006). Effects of temperature and free ammonia on nitrification and nitrate accumulation: In landfill leechate and analysis of its nitrifying bacterial community by fish. Bioresource Technology, 97(3), 459-468.
Morcos, N. Y. S., Diab, M. R., Allah, A. A., & Borgsh, I. H. I. A. (2015). Acute health effects of chloroform and xylene in mice. ResearchGate, Pp. 1-25.
Nahm, K. H., & Nahm, B. A. (2004). Poultry production and waste management. Republic of korea, Yu han Publishing, ISBN 89-7722-623-6
Ngodigha, E. M., & Owen, O. J. (2009). Evaluation of the bacteriological characteristics of poultry litter as feedstuff for cattle. Science Resources, 4(3), 188-190.
Nwankwegu, A. S., Nzomiwu, C. V., Nwozor, N. C., & Eneite, H. C. (2016b). Evaluation and antimicrobial susceptibility pattern of pathogenic bacteria in poultry wastes. International Journal of Microbiology and Biotechnology, 1(1), 10-15.
Nwankwegu, A. S., Onwosi, C. O., Orji, M. U., Anaukwu, C. G., Okafor, U. C., Azi, F., & Marins, P. E. (2016a). Reclamation of DPK hydrocarbon polluted agricultural soil using a selected bulking agent. Journal of Environmental Management, 172, 136-142.
Olukoya, D. O., & Oni, O. (1990). Plasmids profile analysis and antimicrobial susceptibility patterns of Shigella isolates from Nigeria. Epidemiology and Infection, 105(1), 59-64.
Ominisi, P. A., & Omaje, J. J. (2006). An evaluation of poultry litter as feed stuff for growing rabbits. Livestock Resource Development, 18(11), 5-10.
Parker, C. T., Huynh, S., Quinones, B., Harris, L. J., & Mandrell, R. E. (2010). Comparison of genotypes of Salmonella enterica serova Entritidia phage type 30 and 9c strains isolated during three out breaks Associated with raw Almonds. Applied Environmental Microbiology, 76(11), 3723-3731.
Resende, J. A., Silva, V. L., Rocha de Oliveira, T. L., de Oliveira, F. S., de CastaCarneiro, J., Otenlo, M. H., & Dinz, C. G. (2014). Prevalence and persistence of potentially pathogenic and antibiotic resistant bacteria during anaerobic digestion treatment of cattle manure. Bioresources Technology, 153, 284-291.
Ryan, K. J., & Ray, C. G. (2004). Epidemiology of infectious diseases. Sherris Medical Microbiology. 4th edn. McGraw Hill, New York. Pp. 362-368.
Syngkon, A., Elluri, S., Koley, H., Rompokuntal., P. K., Saha., D. R., Chakrabarti, M. K., Bhadra., R. K., Wai, S. N., & Pal, A. (2010). Studies on a novel serine protease of a ΔhapAΔprtV Vibrio cholera 01 strain and its role in haemprrhagic response in the rabbit ileal loop model. PLOS ONE, 5(9), e13122.
Thyagarajan, D., Barathi, M., & Sakthivadivu, R. (2013). Journal of Agriculture and Veterinary Science, 6(5), 23-55.
Willey, J. M., Sherwood, I. M., & Wodverton, C. J. (2008). Prescott, Harley and Kleins Microbiology, 7th edn. McGraw-Hill companies, New York, pp. 537 – 813.
Yah, S. C., Eghafona, N. O., Oranusi, S., & Abouo, A. M. (2007). Widespread plasmid resistance genes among Proteus species in diabetic wounds of patients in the Ahmadu Bello University Teaching Hospital (ABUTH), Zaria. African Journal of Biotechnology, 6(15), 1757-1762.